Yamaha O-Ring Chain Lubricant – 031-8286515

Yamaha O-Ring Chain Lubricant – 031-8286515 – Rubber yaitu bahan yang betul-betul penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; melainkan Rubber mungkin adalah material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk penggerak, baik dengan truk, mobil, sepeda motor, atau sepeda. Rubber ialah bahan yang pas untuk ini sebab kemampuannya untuk memecahkan sebagian fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa pun yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yaitu sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti contoh ban menandakan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi bisa diklasifikasikan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (misalnya O-Ring)
  2. Mengerjakan cairan (contohnya Selang taman
  3. Menyimpan kekuatan (misalnya kabel bungee)
  4. Mengirimkan kekuatan (semisal sabuk penggagas)
  5. Meresap energi (semisal Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Padahal para insinyur mungkin menggunakan banyak opsi lain untuk menempuh tujuan ini, Rubber tak jarang tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah daripada alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat dibentuk menjadi konfigurasi yang amat kompleks, dan bisa terikat pada hampir seluruh material substrat untuk membentuk bagian komposit, betul-betul meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit seputar Rubber yakni kompleksitasnya. Rubber merupakan bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama yaitu sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Umpamanya, logam lazimnya dicampur dari mungkin 2 hingga 4 faktor; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan sempurna, yang semuanya mesti dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memutuskan yaitu sifat termosettingnya. Untuk memproduksi komponen Rubber Anda semestinya memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, respon yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari seperti itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat menyangkal analisa. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang dikasih, penting untuk memahami bermacam pilihan yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing memiliki kekuatan dan kelemahannya. Sebagai contoh, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tetapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang sungguh-sungguh bagus dari temperatur yang sangat rendah sampai suhu yang amat tinggi, tapi memiliki kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sangat memberi pengaruh sifat daya kerja.

Berjenis-jenis usul polimer potensial ini menawarkan terhadap insinyur bermacam-macam kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan daya kerja memerlukan pemilihan yang jitu di antara alternatif. Banyaknya variabel yang berperan membikin desain formulasi Rubber adalah latihan yang sangat kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada akhirnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yaitu menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang wajib mengawali dengan memutuskan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Menjalankan cairan? Apakah perlu menyimpan dan melepaskan kekuatan? Apakah itu cuma mengirimkan tenaga? Apakah tenaga mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi memerlukan banyak perbuatan mekanis, dan salah satu keindahan Rubber ialah kemampuannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini tak jarang menjadikan Rubber alternatif terbaik untuk insinyur.

Untuk memutuskan performa yang ideal dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa amat terbatas tergantung pada kombinasi kondisi. Hal yang perlu dipertimbangkan ialah: kisaran suhu dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa bahkan (radiasi panas, cahaya sang surya, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah beban ditetapkan atau defleksi diatur); dan tekanan hadir. Semakin cermat hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar peluang keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali lewat bermacam gerakan, yang lazimnya pantas untuk Rubber; melainkan pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada hasilnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan prasyarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pencetus melalui frekuensi kritisnya). Desain untuk aplikasi dinamis menyokong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak umum untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dijalankan di laboratorium dan memberikan beberapa indikasi performa formulasi. Namun, benar-benar sering kali cuma menguji bahwa duplikat situasi lapangan dapat dipercaya untuk memutuskan penerimaan akhir dari formulasi.

Menentukan bahan Rubber untuk aplikasi bisa jauh lebih menantang daripada memastikan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber ialah milik produsen yang diberi yang mengembangkannya, dan karena itu tidak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, terutama dikala bersepeda dinamis ialah fitur yang dominan. Untuk aplikasi kritis seperti itu sering tak ada spesifikasi universal yang layak untuk daftar pada gambar (seumpama ASTM line callout, dsb), dan satu-satunya opsi insinyur mungkin untuk menetapkan formulasi Rubber kepemilikan yang sebenarnya yang sudah ternyata dalam aplikasi.

Mengingat beragam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber adalah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka mempunyai kans terbaik untuk menemani Anda melewati dunia Rubber yang berbagai dan kompleks. Pada akibatnya, ini akan menghemat waktu dan uang Anda, sementara juga menjadikan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar anda diproses.