Wedges With Bolognese Sauce – 031-8286515 – Rubber yakni bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; melainkan Rubber mungkin yakni material yang paling sedikit dipahami yang digunakan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk penggerak, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini karena kesanggupannya untuk mengatasi sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang benar-benar fleksibel dan bendung lama untuk menahan udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.
Definisi teknik dari bahan Rubber yaitu “materi apa pun yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini diterapkan untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya menampilkan fleksibilitas ciri Rubber alam.
Seperti teladan ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat dikelompokkan secara luas ke dalam golongan fungsional berikut:
- Sealing fluid (misalnya O-Ring)
- Menjalankan cairan (umpamanya Selang taman
- Menaruh energi (contohnya kabel bungee)
- Mengirimkan daya (umpamanya sabuk pencetus)
- Mengabsorpsi kekuatan (seumpama Bumper)
Menyediakan dukungan struktural (umpamanya Bantalan jembatan)
Meski para insinyur mungkin mengaplikasikan banyak alternatif lain untuk menempuh tujuan ini, Rubber kerap kali tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang sungguh-sungguh kompleks, dan bisa terikat pada hampir segala material substrat untuk menyusun bagian komposit, sungguh-sungguh meningkatkan kecakapan insinyur untuk menyesuaikan fungsi bagian.
Salah satu alasan mengapa kebanyakan insinyur hanya tahu sedikit seputar Rubber ialah kompleksitasnya. Rubber ialah bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.
Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Contohnya, logam biasanya dicampur dari mungkin 2 sampai 4 faktor; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan total, yang semuanya sepatutnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.
Kompleksitas Rubber yang terakhir dan memutuskan yakni sifat termosettingnya. Untuk memproduksi komponen Rubber Anda wajib memanaskan Rubber selama waktu yang cukup untuk menyebabkan reaksi kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, respons yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang bisa diprediksi secara masuk logika di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menyangkal analitik . Ada terlalu banyak variabel yang berperan!
Dalam memilih Rubber untuk tiap aplikasi yang diberi, penting untuk memahami berbagai opsi yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai tenaga dan kelemahannya. Sebagai contoh, beberapa polimer Rubber unggul pada ketahanan kepada cairan agresif, melainkan mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan daya kerja yang sungguh-sungguh bagus dari suhu yang betul-betul rendah hingga suhu yang sungguh-sungguh tinggi, namun memiliki tenaga tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat sangat memberi pengaruh sifat performa.
Berbagai masukan polimer potensial ini menawarkan terhadap insinyur bermacam-macam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan kinerja membutuhkan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membikin desain formulasi Rubber merupakan latihan yang amat kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada hasilnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.
Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting ialah memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang seharusnya memulai dengan menentukan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Menjalankan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu hanya mengirimkan energi? Apakah kekuatan meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?
Sebagian besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber merupakan kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap mewujudkan Rubber opsi terbaik untuk insinyur.
Untuk memastikan kinerja yang tepat dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yakni: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lainnya.); eksposur radiasi apa pun (radiasi panas, cahaya sang surya, UV, korona, dan lainnya.); gaya yang ditemui (apakah bobot ditetapkan atau defleksi diatur); dan tekanan hadir. Kian akurat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar kesempatan keberhasilan dalam menempuh tujuan desain.
Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali melalui beragam gerakan, yang umumnya sesuai untuk Rubber; tetapi pelenturan siklik berulang dapat menciptakan retakan kelelahan yang pada akibatnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memastikan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pionir melewati frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.
Dalam mengembangkan formulasi, itu tidak awam untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dikerjakan di laboratorium dan memberikan beberapa indikasi daya kerja formulasi. Namun, benar-benar kerap kali hanya menguji bahwa duplikat kondisi lapangan dapat diandalkan untuk memastikan penerimaan akhir dari formulasi.
Menentukan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang memutuskan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber ialah milik produsen yang dikasih yang mengembangkannya, dan karena itu tidak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, terutama ketika bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu tak jarang tidak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dll), dan satu-satunya alternatif insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang sebetulnya yang sudah terbukti dalam aplikasi.
Mengingat pelbagai opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam proses. Mereka mempunyai peluang terbaik untuk menemani Anda melalui dunia Rubber yang berjenis-jenis dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.
Need Industrial Seal? Please call 031-8286515