Standard O-Ring Sizes Metric Pdf – 031-8286515

Standard O-Ring Sizes Metric Pdf – 031-8286515 – Rubber yakni bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; melainkan Rubber mungkin yaitu material yang paling sedikit dipahami yang digunakan para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pionir, bagus dengan truk, mobil, sepeda motor, atau sepeda. Rubber yakni bahan yang pas untuk ini sebab kecakapannya untuk menuntaskan sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang betul-betul fleksibel dan tahan lama untuk menahan udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber ialah “materi apa pun yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini digunakan untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya memperlihatkan fleksibilitas ciri Rubber alam.

Seperti figur ban menandakan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi bisa dikategorikan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Melaksanakan cairan (semisal Selang taman
  3. Menaruh energi (umpamanya kabel bungee)
  4. Mengirimkan kekuatan (contohnya sabuk pelopor)
  5. Meresap energi (seumpama Bumper)
    Menyediakan dukungan struktural (seumpama Bantalan jembatan)

Meski para insinyur mungkin menerapkan banyak pilihan lain untuk mencapai tujuan ini, Rubber kerap tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah ketimbang alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa disusun menjadi konfigurasi yang betul-betul kompleks, dan bisa terikat pada hampir seluruh material substrat untuk membentuk bagian komposit, benar-benar meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit perihal Rubber ialah kompleksitasnya. Rubber adalah bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari semua zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Semisal, logam lazimnya dicampur dari mungkin 2 hingga 4 unsur; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan mempertimbangkan yaitu sifat termosettingnya. Untuk memproduksi komponen Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk akal di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang diberikan, penting untuk memahami beraneka opsi yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai tenaga dan kelemahannya. Sebagai model, sebagian polimer Rubber unggul pada ketahanan terhadap cairan agresif, melainkan mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan performa yang sungguh-sungguh baik dari temperatur yang benar-benar rendah hingga temperatur yang sungguh-sungguh tinggi, melainkan memiliki kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sungguh-sungguh memberi pengaruh sifat daya kerja.

Beragam usulan polimer potensial ini menawarkan terhadap insinyur beragam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan performa memerlukan pemilihan yang cermat di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengembangkan aplikasi, tugas yang paling penting yakni menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang mesti mengawali dengan menentukan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah komponen akan menyegel cairan? Menjalankan cairan? Apakah perlu menyimpan dan melepaskan daya? Apakah itu hanya mengirimkan tenaga? Apakah daya meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu keindahan Rubber ialah kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini tak jarang mewujudkan Rubber alternatif terbaik untuk insinyur.

Untuk memutuskan performa yang ideal dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan adalah: kisaran suhu dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lain-lain.); eksposur radiasi apa pun (radiasi panas, cahaya sang surya, UV, korona, dan sebagainya.); gaya yang dijumpai (apakah bobot ditetapkan atau defleksi ditetapkan); dan tekanan hadir. Semakin cermat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar kesempatan keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang benar-benar menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali lewat bermacam-macam gerakan, yang lazimnya pantas untuk Rubber; namun pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menetapkan prasyarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pionir lewat frekuensi kritisnya). Desain untuk aplikasi dinamis mendukung seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tidak awam untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi optimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dilakukan di laboratorium dan memberikan sebagian indikasi daya kerja formulasi. Namun, sungguh-sungguh kerap kali cuma menguji bahwa duplikat situasi lapangan bisa dipercaya untuk menentukan penerimaan akhir dari formulasi.

Memastikan bahan Rubber untuk aplikasi bisa jauh lebih menantang daripada menetapkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber adalah milik produsen yang diberikan yang mengembangkannya, dan sebab itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, terutamanya ketika bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu sering kali tak ada spesifikasi universal yang layak untuk daftar pada gambar (seumpama ASTM line callout, dan lain-lain), dan satu-satunya pilihan insinyur mungkin untuk memastikan formulasi Rubber kepemilikan yang sesungguhnya yang telah rupanya dalam aplikasi.

Mengingat beragam pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber ialah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka memiliki kans terbaik untuk menemani Anda via dunia Rubber yang pelbagai dan kompleks. Pada alhasil, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.