Shaft Seal Types – 031-8286515 – Rubber adalah bahan yang sungguh-sungguh penting untuk peradaban industri modern, dengan aplikasi yang memutari kita di mana-mana; melainkan Rubber mungkin adalah material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pencetus, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber ialah bahan yang pas untuk ini karena kemampuannya untuk mengatasi beberapa fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan pergesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.
Definisi teknik dari bahan Rubber merupakan “materi apa bahkan yang dapat meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Meski istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar adalah sintetis, dan semuanya menonjolkan fleksibilitas ciri Rubber alam.
Seperti figur ban membuktikan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat dikategorikan secara luas ke dalam golongan fungsional berikut:
- Sealing fluid (contohnya O-Ring)
- Melakukan cairan (seumpama Selang taman
- Menyimpan kekuatan (semisal kabel bungee)
- Mengirimkan energi (semisal sabuk pencetus)
- Meresap tenaga (semisal Bumper)
Menyediakan dukungan struktural (contohnya Bantalan jembatan)
Meskipun para insinyur mungkin menerapkan banyak alternatif lain untuk mencapai tujuan ini, Rubber sering kali tampil dengan keanggunan yang lebih besar dan tarif sempurna yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa dibentuk menjadi konfigurasi yang benar-benar kompleks, dan bisa terikat pada hampir seluruh material substrat untuk menyusun komponen komposit, benar-benar meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi komponen.
Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit tentang Rubber yaitu kompleksitasnya. Rubber yaitu bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari semua zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.
Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Umpamanya, logam biasanya dicampur dari mungkin 2 sampai 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya wajib dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.
Kompleksitas Rubber yang terakhir dan menetapkan yakni sifat termosettingnya. Untuk memproduksi bagian Rubber Anda harus memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk akal di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan reaksi kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat menyanggah analitik . Ada terlalu banyak variabel yang berperan!
Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami bermacam alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai energi dan kelemahannya. Sebagai model, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan performa yang amat bagus dari temperatur yang sungguh-sungguh rendah hingga temperatur yang benar-benar tinggi, tapi mempunyai kekuatan tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sungguh-sungguh mempengaruhi sifat kinerja.
Bermacam usul polimer potensial ini menawarkan terhadap insinyur beraneka kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan performa memerlukan pemilihan yang akurat di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber ialah latihan yang betul-betul rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.
Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting adalah mempertimbangkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang semestinya memulai dengan menetapkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah komponen akan menyegel cairan? Melaksanakan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu hanya mengirimkan energi? Apakah tenaga mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?
Beberapa besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber yaitu kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini tak jarang menciptakan Rubber alternatif terbaik untuk insinyur.
Untuk menetapkan daya kerja yang pas dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa benar-benar terbatas tergantung pada kombinasi kondisi. Hal yang perlu dipertimbangkan yakni: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lain-lain.); eksposur radiasi apa malahan (radiasi panas, sinar sang surya, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah muatan ditentukan atau defleksi ditentukan); dan tekanan hadir. Semakin jitu hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.
Sebuah aplikasi yang benar-benar menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali melewati bermacam gerakan, yang umumnya layak untuk Rubber; tetapi pelenturan siklik berulang dapat menghasilkan retakan kelelahan yang pada hasilnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pelopor via frekuensi kritisnya). Desain untuk aplikasi dinamis menunjang seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang maksimal untuk memenuhi tantangan.
Dalam memaksimalkan formulasi, itu tidak lazim untuk sejumlah campuran yang berbeda yang akan dibuat dan diuji sebelum tiba di solusi maksimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilaksanakan di laboratorium dan memberikan sebagian indikasi performa formulasi. Tapi, amat tak jarang hanya menguji bahwa duplikat kondisi lapangan dapat dipercaya untuk memastikan penerimaan akhir dari formulasi.
Menetapkan bahan Rubber untuk aplikasi bisa jauh lebih menantang daripada memutuskan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yakni milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, terpenting saat bersepeda dinamis merupakan fitur yang dominan. Untuk aplikasi kritis seperti itu acap kali tidak ada spesifikasi universal yang layak untuk daftar pada gambar (semisal ASTM line callout, dll), dan satu-satunya alternatif insinyur mungkin untuk memutuskan formulasi Rubber kepemilikan yang sebetulnya yang telah ternyata dalam aplikasi.
Mengingat berjenis-jenis alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber merupakan dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka mempunyai kans terbaik untuk mendampingi Anda melewati dunia Rubber yang bermacam dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga menjadikan produk favorit.
Need Industrial Seal? Please call 031-8286515