O-Ring Rechner Trelleborg – 031-8286515 – Rubber yaitu bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; melainkan Rubber mungkin yakni material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk penggagas, baik dengan truk, mobil, sepeda motor, atau sepeda. Rubber yakni bahan yang pas untuk ini karena kemampuannya untuk memecahkan sebagian fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.
Definisi teknik dari bahan Rubber yakni “materi apa bahkan yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, dikala ini istilah ini digunakan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yakni sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.
Seperti contoh ban menggambarkan, Rubber dapat melayani sejumlah tujuan rekayasa. Bentang aplikasi bisa dikelompokkan secara luas ke dalam kelompok fungsional berikut:
- Sealing fluid (seumpama O-Ring)
- Melaksanakan cairan (semisal Selang taman
- Menyimpan energi (contohnya kabel bungee)
- Mengirimkan tenaga (semisal sabuk penggerak)
- Mengabsorpsi energi (contohnya Bumper)
Menyediakan dukungan struktural (contohnya Bantalan jembatan)
Meski para insinyur mungkin menerapkan banyak pilihan lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah daripada pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat disusun menjadi konfigurasi yang amat kompleks, dan bisa terikat pada hampir seluruh material substrat untuk menyusun komponen komposit, sungguh-sungguh meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi bagian.
Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit perihal Rubber ialah kompleksitasnya. Rubber yakni bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.
Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebetulnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Misalnya, logam biasanya dicampur dari mungkin 2 sampai 4 unsur; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan total, yang semuanya semestinya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.
Kompleksitas Rubber yang terakhir dan memutuskan yakni sifat termosettingnya. Untuk memproduksi bagian Rubber Anda patut memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk akal di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat menyangkal analisa. Ada terlalu banyak variabel yang berperan!
Dalam memilih Rubber untuk tiap aplikasi yang diberikan, penting untuk memahami bermacam-macam alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai daya dan kelemahannya. Sebagai model, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tapi mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan daya kerja yang sangat bagus dari temperatur yang betul-betul rendah hingga suhu yang sungguh-sungguh tinggi, tetapi mempunyai daya bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat amat mempengaruhi sifat performa.
Berjenis-jenis usul polimer potensial ini menawarkan terhadap insinyur bermacam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan kinerja memerlukan pemilihan yang cermat di antara alternatif. Banyaknya variabel yang berperan membikin desain formulasi Rubber yaitu latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.
Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yakni menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang patut memulai dengan memastikan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Menjalankan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu hanya mengirimkan tenaga? Apakah energi mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?
Beberapa besar aplikasi memerlukan banyak perbuatan mekanis, dan salah satu keindahan Rubber adalah kesanggupannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini sering kali mewujudkan Rubber alternatif terbaik untuk insinyur.
Untuk memutuskan daya kerja yang tepat dan usia panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat amat terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan merupakan: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa bahkan (radiasi panas, cahaya matahari, UV, korona, dsb.); gaya yang ditemui (apakah bobot ditetapkan atau defleksi diatur); dan tekanan hadir. Semakin cermat hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar peluang keberhasilan dalam menempuh tujuan desain.
Sebuah aplikasi yang betul-betul menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via pelbagai gerakan, yang umumnya layak untuk Rubber; tetapi pelenturan siklik berulang dapat menjadikan retakan kelelahan yang pada akibatnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memastikan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (karena mesin penggerak melewati frekuensi kritisnya). Desain untuk aplikasi dinamis menunjang seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.
Dalam mengoptimalkan formulasi, itu tidak awam untuk sejumlah campuran yang berbeda yang akan dijadikan dan diuji sebelum tiba di solusi maksimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, tenaga tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dijalankan di lab dan memberikan beberapa indikasi kinerja formulasi. Tetapi, sangat sering hanya menguji bahwa duplikat kondisi lapangan bisa dipercaya untuk memastikan penerimaan akhir dari formulasi.
Mempertimbangkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber ialah milik produsen yang dikasih yang mengembangkannya, dan sebab itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, terutamanya dikala bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu sering kali tak ada spesifikasi universal yang pantas untuk daftar pada gambar (contohnya ASTM line callout, dsb), dan satu-satunya pilihan insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang sebetulnya yang sudah terbukti dalam aplikasi.
Mengingat bermacam alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber merupakan dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka mempunyai kesempatan terbaik untuk mengantar Anda melewati dunia Rubber yang beraneka dan kompleks. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.
Need Industrial Seal? Please call 081332174171