John Crane Mechanical Seal Type 8 – 081332174171

John Crane Mechanical Seal Type 8 – 081332174171 – Rubber adalah bahan yang betul-betul penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tapi Rubber mungkin yaitu material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pionir, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yakni bahan yang pas untuk ini sebab kemampuannya untuk mengatasi sebagian fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan bendung lama untuk membendung udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yaitu “materi apa pun yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, dikala ini istilah ini diaplikasikan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yaitu sintetis, dan semuanya menampilkan fleksibilitas ciri Rubber alam.

Seperti model ban menggambarkan, Rubber dapat melayani sejumlah tujuan rekayasa. Rentang aplikasi bisa dikelompokkan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (misalnya O-Ring)
  2. Melaksanakan cairan (misalnya Selang taman
  3. Menaruh energi (seumpama kabel bungee)
  4. Mengirimkan energi (semisal sabuk penggerak)
  5. Meresap energi (seumpama Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meskipun para insinyur mungkin memakai banyak alternatif lain untuk menempuh tujuan ini, Rubber acap kali tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah daripada pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang sungguh-sungguh rumit, dan dapat terikat pada hampir seluruh material substrat untuk membentuk komponen komposit, betul-betul meningkatkan kemampuan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit tentang Rubber yaitu kompleksitasnya. Rubber adalah bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Contohnya, logam biasanya dicampur dari mungkin 2 hingga 4 elemen; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan sempurna, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menentukan yakni sifat termosettingnya. Untuk memproduksi komponen Rubber Anda wajib memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membangkang analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang diberi, penting untuk memahami bermacam alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing memiliki tenaga dan kelemahannya. Sebagai figur, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang benar-benar baik dari suhu yang sangat rendah sampai temperatur yang benar-benar tinggi, namun mempunyai kekuatan tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa benar-benar mempengaruhi sifat daya kerja.

Beragam masukan polimer potensial ini menawarkan kepada insinyur pelbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan daya kerja membutuhkan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengembangkan aplikasi, tugas yang paling penting merupakan menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang harus memulai dengan memutuskan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Mengerjakan cairan? Apakah perlu menyimpan dan melepaskan daya? Apakah itu cuma mengirimkan energi? Apakah energi menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu estetika Rubber yakni kesanggupannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini tak jarang menghasilkan Rubber alternatif terbaik untuk insinyur.

Untuk menetapkan performa yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat amat terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan ialah: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lainnya.); eksposur radiasi apa bahkan (radiasi panas, cahaya matahari, UV, korona, dan sebagainya.); gaya yang dijumpai (apakah muatan ditentukan atau defleksi ditentukan); dan tekanan hadir. Kian akurat hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kesempatan keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang amat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali lewat berjenis-jenis gerakan, yang umumnya layak untuk Rubber; tapi pelenturan siklik berulang dapat menciptakan retakan kelelahan yang pada akhirnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan syarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin penggerak lewat frekuensi kritisnya). Desain untuk aplikasi dinamis menyokong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengembangkan formulasi, itu tidak biasa untuk sejumlah campuran yang berbeda yang akan dihasilkan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilaksanakan di lab dan memberikan sebagian indikasi daya kerja formulasi. Tapi, sangat acap kali hanya menguji bahwa duplikat kondisi lapangan bisa diandalkan untuk menetapkan penerimaan akhir dari formulasi.

Memastikan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang menetapkan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yakni milik produsen yang diberikan yang mengembangkannya, dan sebab itu tidak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, khususnya dikala bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu tak jarang tak ada spesifikasi universal yang sesuai untuk daftar pada gambar (umpamanya ASTM line callout, dan sebagainya), dan satu-satunya opsi insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang sesungguhnya yang sudah rupanya dalam aplikasi.

Mengingat beragam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber ialah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka memiliki kesempatan terbaik untuk menemani Anda lewat dunia Rubber yang beraneka dan rumit. Pada akibatnya, ini akan menghemat waktu dan uang Anda, sementara juga menghasilkan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.