How Are Silicone O Rings Made – 081332174171

How Are Silicone O Rings Made – 081332174171 – Rubber yaitu bahan yang amat penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tetapi Rubber mungkin yakni material yang paling sedikit dipahami yang digunakan para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pelopor, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yakni bahan yang tepat untuk ini sebab kemampuannya untuk menuntaskan beberapa fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang betul-betul fleksibel dan tahan lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yaitu “materi apa pun yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini diterapkan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yakni sintetis, dan semuanya memperlihatkan fleksibilitas ciri Rubber alam.

Seperti figur ban menandakan, Rubber dapat melayani sejumlah tujuan rekayasa. Bentang aplikasi dapat digolongankan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (misalnya O-Ring)
  2. Menjalankan cairan (contohnya Selang taman
  3. Menyimpan daya (misalnya kabel bungee)
  4. Mengirimkan kekuatan (umpamanya sabuk pemrakarsa)
  5. Meresap tenaga (semisal Bumper)
    Menyediakan dukungan struktural (seumpama Bantalan jembatan)

Padahal para insinyur mungkin menggunakan banyak opsi lain untuk menempuh tujuan ini, Rubber sering kali tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang benar-benar kompleks, dan dapat terikat pada hampir segala material substrat untuk menyusun bagian komposit, benar-benar meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit perihal Rubber merupakan kompleksitasnya. Rubber merupakan bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang hakekatnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Misalnya, logam lazimnya dicampur dari mungkin 2 sampai 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan total, yang semuanya seharusnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan ialah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda mesti memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang bisa diprediksi secara masuk nalar di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang dikasih, penting untuk memahami bermacam pilihan yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai model, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan performa yang sangat baik dari temperatur yang amat rendah hingga temperatur yang betul-betul tinggi, namun memiliki energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sungguh-sungguh memberi pengaruh sifat daya kerja.

Beragam masukan polimer potensial ini menawarkan terhadap insinyur berbagai kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan performa membutuhkan pemilihan yang jitu di antara alternatif. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang sungguh-sungguh kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada akibatnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yakni menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang wajib memulai dengan menetapkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menaruh dan melepaskan tenaga? Apakah itu cuma mengirimkan daya? Apakah daya meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu keindahan Rubber yakni kesanggupannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini acap kali menjadikan Rubber pilihan terbaik untuk insinyur.

Untuk menentukan daya kerja yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber bisa amat terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yaitu: kisaran temperatur dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa pun (radiasi panas, cahaya matahari, UV, korona, dll.); gaya yang ditemui (apakah beban diatur atau defleksi diatur); dan tekanan hadir. Semakin jitu hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali via berbagai gerakan, yang biasanya pantas untuk Rubber; namun pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan prasyarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin penggagas melalui frekuensi kritisnya). Desain untuk aplikasi dinamis menyokong seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tidak biasa untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dilaksanakan di lab dan memberikan beberapa indikasi performa formulasi. Tapi, benar-benar sering kali hanya menguji bahwa duplikat kondisi lapangan dapat diandalkan untuk menetapkan penerimaan akhir dari formulasi.

Menetapkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada memastikan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber ialah milik produsen yang diberikan yang mengembangkannya, dan karena itu tidak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, lebih-lebih ketika bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu tak jarang tak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dsb), dan satu-satunya opsi insinyur mungkin untuk memastikan formulasi Rubber kepemilikan yang hakekatnya yang sudah terbukti dalam aplikasi.

Mengingat pelbagai pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yaitu dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka mempunyai peluang terbaik untuk memandu Anda melewati dunia Rubber yang bermacam-macam dan kompleks. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga menghasilkan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.