Types Of O-Ring Material – 081332174171

Types Of O-Ring Material – 081332174171 – Rubber merupakan bahan yang amat penting untuk peradaban industri modern, dengan aplikasi yang memutari kita di mana-mana; namun Rubber mungkin merupakan material yang paling sedikit dipahami yang diterapkan para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pelopor, bagus dengan truk, mobil, sepeda motor, atau sepeda. Rubber merupakan bahan yang tepat untuk ini karena kecakapannya untuk menuntaskan beberapa fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang amat fleksibel dan tahan lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan pergesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber ialah “materi apa bahkan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini diaplikasikan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar merupakan sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti figur ban membuktikan, Rubber bisa melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat diklasifikasikan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (umpamanya O-Ring)
  2. Mengerjakan cairan (umpamanya Selang taman
  3. Menaruh daya (umpamanya kabel bungee)
  4. Mengirimkan energi (semisal sabuk pencetus)
  5. Meresap kekuatan (misalnya Bumper)
    Menyediakan dukungan struktural (seumpama Bantalan jembatan)

Sedangkan para insinyur mungkin menerapkan banyak opsi lain untuk mencapai tujuan ini, Rubber sering kali tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa dibentuk menjadi konfigurasi yang benar-benar rumit, dan dapat terikat pada hampir segala material substrat untuk membentuk bagian komposit, sungguh-sungguh meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur cuma tahu sedikit perihal Rubber yaitu kompleksitasnya. Rubber yaitu bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yaitu sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Seumpama, logam umumnya dicampur dari mungkin 2 sampai 4 faktor; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan sempurna, yang semuanya semestinya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, respons yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk akal di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan respons kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menentang analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang diberikan, penting untuk memahami beragam opsi yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai energi dan kelemahannya. Sebagai model, beberapa polimer Rubber unggul pada ketahanan kepada cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan performa yang amat baik dari suhu yang amat rendah hingga temperatur yang benar-benar tinggi, tapi mempunyai energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sungguh-sungguh mempengaruhi sifat kinerja.

Berjenis-jenis usul polimer potensial ini menawarkan kepada insinyur beragam kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan kinerja memerlukan pemilihan yang akurat di antara alternatif. Banyaknya variabel yang berperan membuat desain formulasi Rubber yakni latihan yang amat kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengembangkan aplikasi, tugas yang paling penting adalah mempertimbangkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang sepatutnya memulai dengan menetapkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Menjalankan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu hanya mengirimkan kekuatan? Apakah tenaga menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu estetika Rubber ialah kecakapannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap kali menghasilkan Rubber pilihan terbaik untuk insinyur.

Untuk memastikan performa yang ideal dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber bisa amat terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan merupakan: kisaran temperatur dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lain-lain.); eksposur radiasi apa malah (radiasi panas, cahaya matahari, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah beban ditentukan atau defleksi ditetapkan); dan tekanan hadir. Semakin jitu hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar peluang keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang betul-betul menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali lewat beragam gerakan, yang lazimnya sesuai untuk Rubber; tetapi pelenturan siklik berulang dapat menjadikan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan syarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan menimbulkan tantangan khusus (sebab mesin penggerak lewat frekuensi kritisnya). Desain untuk aplikasi dinamis mendukung seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dikerjakan di lab dan memberikan sebagian indikasi kinerja formulasi. Melainkan, benar-benar sering hanya menguji bahwa duplikat keadaan lapangan bisa dipercaya untuk memastikan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber ialah milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, khususnya saat bersepeda dinamis merupakan fitur yang dominan. Untuk aplikasi kritis seperti itu acap kali tak ada spesifikasi universal yang layak untuk daftar pada gambar (umpamanya ASTM line callout, dan lainnya), dan satu-satunya opsi insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang sebenarnya yang sudah ternyata dalam aplikasi.

Mengingat berbagai alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka mempunyai peluang terbaik untuk memandu Anda via dunia Rubber yang beraneka dan kompleks. Pada alhasil, ini akan menghemat waktu dan uang Anda, sementara juga menghasilkan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.