Types Of Mechanical Seal Failure – 031-8286515

Types Of Mechanical Seal Failure – 031-8286515 – Rubber yakni bahan yang sungguh-sungguh penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tapi Rubber mungkin yaitu material yang paling sedikit dipahami yang digunakan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pencetus, bagus dengan truk, mobil, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini karena kemampuannya untuk mengatasi beberapa fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber merupakan “materi apa bahkan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini diaplikasikan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar ialah sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti figur ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat diklasifikasikan secara luas ke dalam golongan fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Mengerjakan cairan (contohnya Selang taman
  3. Menaruh tenaga (contohnya kabel bungee)
  4. Mengirimkan kekuatan (contohnya sabuk penggerak)
  5. Menyerap tenaga (contohnya Bumper)
    Menyediakan dukungan struktural (umpamanya Bantalan jembatan)

Walaupun para insinyur mungkin memakai banyak pilihan lain untuk mencapai tujuan ini, Rubber tak jarang tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah daripada opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat disusun menjadi konfigurasi yang sungguh-sungguh rumit, dan dapat terikat pada hampir seluruh material substrat untuk membentuk komponen komposit, betul-betul meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit perihal Rubber adalah kompleksitasnya. Rubber yaitu bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama adalah sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari semua zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Seumpama, logam lazimnya dicampur dari mungkin 2 hingga 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya mesti dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan adalah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda semestinya memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membangkang analisa. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang diberi, penting untuk memahami bermacam-macam alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai model, beberapa polimer Rubber unggul pada ketahanan kepada cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan performa yang sangat bagus dari temperatur yang betul-betul rendah hingga suhu yang betul-betul tinggi, namun mempunyai energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sangat memberi pengaruh sifat kinerja.

Beraneka masukan polimer potensial ini menawarkan kepada insinyur pelbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan daya kerja memerlukan pemilihan yang jitu di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang amat kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting ialah memastikan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang seharusnya mengawali dengan memastikan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Mengerjakan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu hanya mengirimkan daya? Apakah daya mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu keindahan Rubber adalah kemampuannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini tak jarang mewujudkan Rubber alternatif terbaik untuk insinyur.

Untuk menetapkan performa yang tepat dan usia panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan merupakan: kisaran temperatur dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa malahan (radiasi panas, cahaya matahari, UV, korona, dan sebagainya.); gaya yang dijumpai (apakah beban ditetapkan atau defleksi ditetapkan); dan tekanan hadir. Semakin cermat hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar peluang keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang benar-benar menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali melalui beragam gerakan, yang lazimnya layak untuk Rubber; namun pelenturan siklik berulang dapat mewujudkan retakan kelelahan yang pada akibatnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pencetus via frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam mengembangkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dijalankan di laboratorium dan memberikan sebagian indikasi daya kerja formulasi. Tapi, amat kerap kali hanya menguji bahwa duplikat kondisi lapangan bisa dipercaya untuk memastikan penerimaan akhir dari formulasi.

Memutuskan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang memastikan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yakni milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, terutama dikala bersepeda dinamis merupakan fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tak ada spesifikasi universal yang cocok untuk daftar pada gambar (contohnya ASTM line callout, dan lain-lain), dan satu-satunya pilihan insinyur mungkin untuk memutuskan formulasi Rubber kepemilikan yang hakekatnya yang telah ternyata dalam aplikasi.

Mengingat bermacam alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka memiliki kans terbaik untuk mendampingi Anda lewat dunia Rubber yang bermacam dan kompleks. Pada alhasil, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.