Standard Rubber O-Ring Sizes – 081332174171

Standard Rubber O-Ring Sizes – 081332174171 – Rubber yaitu bahan yang amat penting untuk peradaban industri modern, dengan aplikasi yang memutari kita di mana-mana; melainkan Rubber mungkin ialah material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pemrakarsa, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber ialah bahan yang tepat untuk ini sebab kesanggupannya untuk menuntaskan beberapa fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa bahkan yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini digunakan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar merupakan sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti teladan ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat dikategorikan secara luas ke dalam kategori fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Melakukan cairan (semisal Selang taman
  3. Menaruh energi (semisal kabel bungee)
  4. Mengirimkan energi (contohnya sabuk pionir)
  5. Meresap tenaga (misalnya Bumper)
    Menyediakan dukungan struktural (umpamanya Bantalan jembatan)

Walaupun para insinyur mungkin menerapkan banyak alternatif lain untuk menempuh tujuan ini, Rubber tak jarang tampil dengan keanggunan yang lebih besar dan tarif sempurna yang lebih rendah ketimbang alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa disusun menjadi konfigurasi yang benar-benar rumit, dan dapat terikat pada hampir seluruh material substrat untuk menyusun komponen komposit, sungguh-sungguh meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit seputar Rubber merupakan kompleksitasnya. Rubber adalah bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Contohnya, logam lazimnya dicampur dari mungkin 2 hingga 4 faktor; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan total, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menentukan merupakan sifat termosettingnya. Untuk memproduksi bagian Rubber Anda wajib memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk akal di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menentang analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang diberi, penting untuk memahami beraneka alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai tenaga dan kelemahannya. Sebagai figur, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan kinerja yang betul-betul bagus dari temperatur yang sangat rendah hingga temperatur yang sangat tinggi, melainkan mempunyai tenaga tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa amat mempengaruhi sifat performa.

Beragam usul polimer potensial ini menawarkan terhadap insinyur berbagai kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan daya kerja memerlukan pemilihan yang cermat di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber yakni latihan yang betul-betul rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada akibatnya, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yaitu memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang patut memulai dengan menetapkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu hanya mengirimkan kekuatan? Apakah daya meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber ialah kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini sering mewujudkan Rubber alternatif terbaik untuk insinyur.

Untuk menentukan performa yang ideal dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan yaitu: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dll.); eksposur radiasi apa malah (radiasi panas, cahaya sang surya, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah beban ditetapkan atau defleksi ditentukan); dan tekanan hadir. Kian jitu hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang betul-betul menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali melewati pelbagai gerakan, yang biasanya cocok untuk Rubber; namun pelenturan siklik berulang bisa menciptakan retakan kelelahan yang pada kesudahannya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan syarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin penggagas lewat frekuensi kritisnya). Desain untuk aplikasi dinamis menunjang seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tidak awam untuk sejumlah campuran yang berbeda yang akan dihasilkan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dikerjakan di lab dan memberikan beberapa indikasi daya kerja formulasi. Namun, betul-betul sering kali cuma menguji bahwa duplikat keadaan lapangan dapat diandalkan untuk memastikan penerimaan akhir dari formulasi.

Menetapkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber merupakan milik produsen yang dikasih yang mengembangkannya, dan sebab itu tidak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, lebih-lebih ketika bersepeda dinamis adalah fitur yang dominan. Untuk aplikasi kritis seperti itu kerap kali tidak ada spesifikasi universal yang pantas untuk daftar pada gambar (contohnya ASTM line callout, dll), dan satu-satunya alternatif insinyur mungkin untuk menetapkan formulasi Rubber kepemilikan yang hakekatnya yang sudah rupanya dalam aplikasi.

Mengingat berjenis-jenis pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber ialah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka memiliki kesempatan terbaik untuk menemani Anda melewati dunia Rubber yang berjenis-jenis dan rumit. Pada kesudahannya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.