Slip Ring Carbon Brush – 081332174171

Slip Ring Carbon Brush – 081332174171 – Rubber adalah bahan yang benar-benar penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tapi Rubber mungkin merupakan material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pionir, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber merupakan bahan yang tepat untuk ini sebab kemampuannya untuk memecahkan sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang betul-betul fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan pergesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa malahan yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar merupakan sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti figur ban membuktikan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi bisa dikelompokkan secara luas ke dalam golongan fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Melaksanakan cairan (contohnya Selang taman
  3. Menyimpan kekuatan (umpamanya kabel bungee)
  4. Mengirimkan kekuatan (semisal sabuk pemrakarsa)
  5. Menyerap kekuatan (seumpama Bumper)
    Menyediakan dukungan struktural (seumpama Bantalan jembatan)

Sedangkan para insinyur mungkin memakai banyak pilihan lain untuk mencapai tujuan ini, Rubber kerap kali tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat disusun menjadi konfigurasi yang betul-betul kompleks, dan dapat terikat pada hampir semua material substrat untuk membentuk bagian komposit, benar-benar meningkatkan kemampuan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit perihal Rubber merupakan kompleksitasnya. Rubber yakni bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Umpamanya, logam biasanya dicampur dari mungkin 2 hingga 4 elemen; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan adalah sifat termosettingnya. Untuk memproduksi bagian Rubber Anda patut memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk logika di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari begitu banyak bahan yang berbeda dan melibatkan reaksi kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menyanggah analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami berbagai alternatif yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai daya dan kelemahannya. Sebagai teladan, sebagian polimer Rubber unggul pada ketahanan terhadap cairan agresif, tetapi mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan performa yang benar-benar bagus dari temperatur yang amat rendah hingga suhu yang sangat tinggi, namun mempunyai energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat betul-betul memberi pengaruh sifat performa.

Berbagai masukan polimer potensial ini menawarkan kepada insinyur beragam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan daya kerja membutuhkan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membikin desain formulasi Rubber ialah latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada akhirnya, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting merupakan memastikan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang patut memulai dengan memastikan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Menjalankan cairan? Apakah perlu menyimpan dan melepaskan daya? Apakah itu hanya mengirimkan daya? Apakah energi menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi memerlukan banyak perbuatan mekanis, dan salah satu estetika Rubber ialah kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini sering menjadikan Rubber alternatif terbaik untuk insinyur.

Untuk menentukan daya kerja yang pas dan usia panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan yakni: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa malah (radiasi panas, sinar sang surya, UV, korona, dan lainnya.); gaya yang ditemui (apakah bobot diatur atau defleksi diatur); dan tekanan hadir. Semakin akurat hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali melalui bermacam-macam gerakan, yang umumnya pantas untuk Rubber; tetapi pelenturan siklik berulang bisa menciptakan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan syarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pelopor lewat frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengembangkan formulasi, itu tak umum untuk sejumlah campuran yang berbeda yang akan dihasilkan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dijalankan di laboratorium dan memberikan sebagian indikasi kinerja formulasi. Tetapi, benar-benar kerap cuma menguji bahwa duplikat situasi lapangan dapat diandalkan untuk mempertimbangkan penerimaan akhir dari formulasi.

Menentukan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber merupakan milik produsen yang dikasih yang mengembangkannya, dan karena itu tidak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, khususnya saat bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu kerap kali tidak ada spesifikasi universal yang cocok untuk daftar pada gambar (semisal ASTM line callout, dsb), dan satu-satunya alternatif insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang hakekatnya yang telah rupanya dalam aplikasi.

Mengingat bermacam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka mempunyai kans terbaik untuk menemani Anda melalui dunia Rubber yang berbagai dan rumit. Pada alhasil, ini akan menghemat waktu dan uang Anda, sementara juga menghasilkan produk unggulan.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.