Seal Ring Integrated Circuit – 081332174171

Seal Ring Integrated Circuit – 081332174171 – Rubber adalah bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; namun Rubber mungkin ialah material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk penggagas, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber merupakan bahan yang ideal untuk ini karena kemampuannya untuk menyelesaikan beberapa fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk menahan udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber adalah “materi apa pun yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini dipakai untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar adalah sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti figur ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi bisa dikelompokkan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Melaksanakan cairan (umpamanya Selang taman
  3. Menaruh kekuatan (misalnya kabel bungee)
  4. Mengirimkan kekuatan (contohnya sabuk pencetus)
  5. Mengabsorpsi daya (misalnya Bumper)
    Menyediakan dukungan struktural (contohnya Bantalan jembatan)

Meski para insinyur mungkin mengaplikasikan banyak pilihan lain untuk menempuh tujuan ini, Rubber kerap tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah daripada opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber dapat dibentuk menjadi konfigurasi yang sungguh-sungguh kompleks, dan dapat terikat pada hampir seluruh material substrat untuk membentuk bagian komposit, amat meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan mengapa kebanyakan insinyur hanya tahu sedikit seputar Rubber merupakan kompleksitasnya. Rubber yaitu bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Contohnya, logam umumnya dicampur dari mungkin 2 sampai 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan total, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menetapkan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan reaksi kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berguna. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk nalar di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang diberi, penting untuk memahami pelbagai alternatif yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai figur, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tapi mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan daya kerja yang benar-benar bagus dari temperatur yang sangat rendah sampai temperatur yang betul-betul tinggi, tetapi memiliki tenaga tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat sungguh-sungguh memberi pengaruh sifat daya kerja.

Pelbagai masukan polimer potensial ini menawarkan terhadap insinyur beraneka kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan performa memerlukan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membikin desain formulasi Rubber yakni latihan yang sangat kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengembangkan aplikasi, tugas yang paling penting adalah memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang seharusnya mengawali dengan mempertimbangkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Melaksanakan cairan? Apakah perlu menaruh dan melepaskan energi? Apakah itu hanya mengirimkan energi? Apakah daya menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber ialah kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini sering kali menghasilkan Rubber alternatif terbaik untuk insinyur.

Untuk memastikan kinerja yang ideal dan usia panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat sungguh-sungguh terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan merupakan: kisaran temperatur dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa pun (radiasi panas, cahaya matahari, UV, korona, dsb.); gaya yang ditemui (apakah beban ditentukan atau defleksi diatur); dan tekanan hadir. Semakin akurat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar kans keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang amat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali melewati bermacam gerakan, yang biasanya cocok untuk Rubber; melainkan pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada alhasil bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menetapkan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pelopor melalui frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam mengembangkan formulasi, itu tidak lazim untuk sejumlah campuran yang berbeda yang akan dibuat dan diuji sebelum tiba di solusi optimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dijalankan di lab dan memberikan beberapa indikasi kinerja formulasi. Tapi, benar-benar sering kali cuma menguji bahwa duplikat kondisi lapangan bisa dipercaya untuk menentukan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang menentukan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber merupakan milik produsen yang dikasih yang mengembangkannya, dan karena itu tak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, lebih-lebih saat bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dsb), dan satu-satunya alternatif insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang sebetulnya yang sudah ternyata dalam aplikasi.

Mengingat berbagai pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber merupakan dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka memiliki kesempatan terbaik untuk mengantar Anda lewat dunia Rubber yang pelbagai dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.