Rubber Beading For Sheet Metal – 031-8286515

Rubber Beading For Sheet Metal – 031-8286515 – Rubber adalah bahan yang sungguh-sungguh penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tetapi Rubber mungkin adalah material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pelopor, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini sebab kesanggupannya untuk menyelesaikan beberapa fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber merupakan “materi apa malahan yang dapat meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar merupakan sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti figur ban membuktikan, Rubber bisa melayani sejumlah tujuan rekayasa. Jangka aplikasi bisa dikelompokkan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Melakukan cairan (misalnya Selang taman
  3. Menaruh daya (contohnya kabel bungee)
  4. Mengirimkan tenaga (contohnya sabuk pencetus)
  5. Mengabsorpsi energi (umpamanya Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meskipun para insinyur mungkin menggunakan banyak pilihan lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah ketimbang alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber dapat disusun menjadi konfigurasi yang benar-benar rumit, dan dapat terikat pada hampir semua material substrat untuk membentuk bagian komposit, sungguh-sungguh meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit perihal Rubber yakni kompleksitasnya. Rubber adalah bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Contohnya, logam lazimnya dicampur dari mungkin 2 hingga 4 faktor; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya wajib dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menetapkan yaitu sifat termosettingnya. Untuk memproduksi bagian Rubber Anda mesti memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tak dapat dibalikkan yang melibatkan banyak bahan, tanggapan yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari seperti itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat menyangkal analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang diberikan, penting untuk memahami bermacam-macam pilihan yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai energi dan kelemahannya. Sebagai figur, sebagian polimer Rubber unggul pada ketahanan terhadap cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang sangat baik dari suhu yang sangat rendah hingga temperatur yang benar-benar tinggi, tetapi memiliki energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat benar-benar mempengaruhi sifat performa.

Beragam usul polimer potensial ini menawarkan terhadap insinyur berbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan kinerja membutuhkan pemilihan yang jitu di antara alternatif. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada hasilnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting merupakan menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang harus memulai dengan mempertimbangkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Melakukan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu cuma mengirimkan kekuatan? Apakah energi mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu keindahan Rubber yakni kesanggupannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini sering kali menjadikan Rubber pilihan terbaik untuk insinyur.

Untuk menetapkan daya kerja yang ideal dan usia panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa betul-betul terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan adalah: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan sebagainya.); eksposur radiasi apa bahkan (radiasi panas, sinar sang surya, UV, korona, dsb.); gaya yang dijumpai (apakah muatan ditetapkan atau defleksi diatur); dan tekanan hadir. Semakin jitu hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar kesempatan keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali via bermacam gerakan, yang biasanya pantas untuk Rubber; tapi pelenturan siklik berulang dapat menciptakan retakan kelelahan yang pada kesudahannya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memastikan prasyarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin penggagas via frekuensi kritisnya). Desain untuk aplikasi dinamis menunjang seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tak biasa untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi optimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dijalankan di lab dan memberikan beberapa indikasi kinerja formulasi. Namun, sungguh-sungguh sering cuma menguji bahwa duplikat kondisi lapangan dapat dipercaya untuk mempertimbangkan penerimaan akhir dari formulasi.

Memutuskan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang memastikan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber adalah milik produsen yang diberikan yang mengembangkannya, dan karena itu tak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, secara khusus dikala bersepeda dinamis ialah fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tidak ada spesifikasi universal yang pantas untuk daftar pada gambar (misalnya ASTM line callout, dll), dan satu-satunya pilihan insinyur mungkin untuk memutuskan formulasi Rubber kepemilikan yang sebetulnya yang sudah ternyata dalam aplikasi.

Mengingat beraneka pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka mempunyai kans terbaik untuk mengantar Anda lewat dunia Rubber yang beraneka dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.