O-Ring Viton Dimension – 081332174171

O-Ring Viton Dimension – 081332174171 – Rubber merupakan bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang memutari kita di mana-mana; tetapi Rubber mungkin yaitu material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pelopor, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini sebab kesanggupannya untuk memecahkan beberapa fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang amat fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa bahkan yang dapat meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Sedangkan istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini diaplikasikan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar merupakan sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti model ban membuktikan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi bisa dikelompokkan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Melaksanakan cairan (contohnya Selang taman
  3. Menaruh energi (misalnya kabel bungee)
  4. Mengirimkan daya (misalnya sabuk pencetus)
  5. Meresap daya (semisal Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meskipun para insinyur mungkin menerapkan banyak pilihan lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah daripada alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa dibentuk menjadi konfigurasi yang sangat kompleks, dan bisa terikat pada hampir seluruh material substrat untuk membentuk komponen komposit, benar-benar meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur cuma tahu sedikit seputar Rubber adalah kompleksitasnya. Rubber adalah bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebetulnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Semisal, logam umumnya dicampur dari mungkin 2 hingga 4 unsur; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya mesti dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menetapkan ialah sifat termosettingnya. Untuk memproduksi bagian Rubber Anda patut memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tak dapat dibalikkan yang melibatkan banyak bahan, reaksi yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk nalar di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari seperti itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang dikasih, penting untuk memahami pelbagai pilihan yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai tenaga dan kelemahannya. Sebagai model, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang betul-betul bagus dari temperatur yang sungguh-sungguh rendah hingga temperatur yang sungguh-sungguh tinggi, tetapi mempunyai tenaga tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat benar-benar memberi pengaruh sifat daya kerja.

Bermacam usulan polimer potensial ini menawarkan terhadap insinyur pelbagai kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan daya kerja memerlukan pemilihan yang jitu di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber yakni latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yakni mempertimbangkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang harus mengawali dengan menetapkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Melaksanakan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu hanya mengirimkan daya? Apakah kekuatan mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu keindahan Rubber merupakan kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini tak jarang menjadikan Rubber opsi terbaik untuk insinyur.

Untuk mempertimbangkan performa yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi kondisi. Hal yang perlu dipertimbangkan ialah: kisaran temperatur dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lainnya.); eksposur radiasi apa malahan (radiasi panas, cahaya matahari, UV, korona, dan lain-lain.); gaya yang ditemui (apakah beban diatur atau defleksi ditetapkan); dan tekanan hadir. Semakin cermat hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar peluang keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali lewat bermacam gerakan, yang lazimnya pantas untuk Rubber; tetapi pelenturan siklik berulang bisa mewujudkan retakan kelelahan yang pada akhirnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan prasyarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin pelopor melalui frekuensi kritisnya). Desain untuk aplikasi dinamis menyokong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan memaksimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tidak umum untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi maksimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, tenaga tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilaksanakan di laboratorium dan memberikan sebagian indikasi daya kerja formulasi. Tapi, amat acap kali cuma menguji bahwa duplikat keadaan lapangan dapat diandalkan untuk menetapkan penerimaan akhir dari formulasi.

Menentukan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada memastikan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber yaitu milik produsen yang dikasih yang mengembangkannya, dan karena itu tidak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, terutama dikala bersepeda dinamis adalah fitur yang dominan. Untuk aplikasi kritis seperti itu sering tak ada spesifikasi universal yang sesuai untuk daftar pada gambar (misalnya ASTM line callout, dan lainnya), dan satu-satunya alternatif insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang sebetulnya yang sudah rupanya dalam aplikasi.

Mengingat bermacam-macam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber ialah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka memiliki kesempatan terbaik untuk menemani Anda via dunia Rubber yang bermacam-macam dan kompleks. Pada akibatnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.