O Ring Size And Groove – 081332174171

O Ring Size And Groove – 081332174171 – Rubber ialah bahan yang benar-benar penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; tapi Rubber mungkin merupakan material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pemrakarsa, bagus dengan truk, mobil, sepeda motor, atau sepeda. Rubber merupakan bahan yang tepat untuk ini karena kemampuannya untuk mengatasi sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang benar-benar fleksibel dan bendung lama untuk membendung udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa bahkan yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini diterapkan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti teladan ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat dikategorikan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Melakukan cairan (misalnya Selang taman
  3. Menyimpan energi (contohnya kabel bungee)
  4. Mengirimkan kekuatan (seumpama sabuk pionir)
  5. Meresap kekuatan (misalnya Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Sedangkan para insinyur mungkin menggunakan banyak alternatif lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah daripada opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat dibentuk menjadi konfigurasi yang betul-betul rumit, dan dapat terikat pada hampir semua material substrat untuk membentuk komponen komposit, sangat meningkatkan kecakapan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit tentang Rubber ialah kompleksitasnya. Rubber yaitu bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yaitu sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Misalnya, logam biasanya dicampur dari mungkin 2 hingga 4 elemen; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan sempurna, yang semuanya harus dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda semestinya memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tak dapat dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang bisa diprediksi secara masuk akal di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respons kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menyanggah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang diberi, penting untuk memahami beraneka pilihan yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai tenaga dan kelemahannya. Sebagai contoh, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tetapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan daya kerja yang sangat baik dari temperatur yang betul-betul rendah sampai suhu yang amat tinggi, melainkan memiliki kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa benar-benar memberi pengaruh sifat kinerja.

Beraneka masukan polimer potensial ini menawarkan kepada insinyur beraneka kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan kinerja membutuhkan pemilihan yang akurat di antara pilihan. Banyaknya variabel yang berperan membikin desain formulasi Rubber merupakan latihan yang benar-benar rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengembangkan aplikasi, tugas yang paling penting adalah menetapkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang sepatutnya memulai dengan memutuskan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Melaksanakan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu cuma mengirimkan kekuatan? Apakah tenaga meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu estetika Rubber merupakan kesanggupannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini tak jarang menghasilkan Rubber opsi terbaik untuk insinyur.

Untuk memutuskan daya kerja yang pas dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat sangat terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan ialah: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lain-lain.); eksposur radiasi apa malah (radiasi panas, cahaya matahari, UV, korona, dan lain-lain.); gaya yang ditemui (apakah bobot diatur atau defleksi diatur); dan tekanan hadir. Kian akurat hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via pelbagai gerakan, yang lazimnya pantas untuk Rubber; melainkan pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada alhasil bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pionir melalui frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengembangkan formulasi, itu tak lazim untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dilakukan di lab dan memberikan beberapa indikasi daya kerja formulasi. Namun, amat kerap cuma menguji bahwa duplikat keadaan lapangan bisa diandalkan untuk mempertimbangkan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada memastikan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber merupakan milik produsen yang diberikan yang mengembangkannya, dan karena itu tidak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, secara khusus saat bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu kerap kali tidak ada spesifikasi universal yang cocok untuk daftar pada gambar (seumpama ASTM line callout, dan lainnya), dan satu-satunya opsi insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang hakekatnya yang sudah ternyata dalam aplikasi.

Mengingat berbagai alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber adalah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka mempunyai peluang terbaik untuk menemani Anda via dunia Rubber yang berjenis-jenis dan kompleks. Pada alhasil, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk favorit.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar anda diproses.