O Ring Material For Hydrogen – 031-8286515

O Ring Material For Hydrogen – 031-8286515 – Rubber yakni bahan yang benar-benar penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; namun Rubber mungkin merupakan material yang paling sedikit dipahami yang diterapkan para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk penggerak, baik dengan truk, mobil, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini karena kemampuannya untuk memecahkan sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang benar-benar fleksibel dan tahan lama untuk menahan udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa malahan yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, saat ini istilah ini diterapkan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya memperlihatkan fleksibilitas ciri Rubber alam.

Seperti teladan ban membuktikan, Rubber bisa melayani sejumlah tujuan rekayasa. Bentang aplikasi dapat digolongankan secara luas ke dalam golongan fungsional berikut:

  1. Sealing fluid (umpamanya O-Ring)
  2. Melaksanakan cairan (umpamanya Selang taman
  3. Menyimpan tenaga (contohnya kabel bungee)
  4. Mengirimkan daya (semisal sabuk pemrakarsa)
  5. Menyerap energi (semisal Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meskipun para insinyur mungkin menggunakan banyak alternatif lain untuk menempuh tujuan ini, Rubber sering kali tampil dengan keanggunan yang lebih besar dan tarif sempurna yang lebih rendah daripada pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa disusun menjadi konfigurasi yang sungguh-sungguh rumit, dan bisa terikat pada hampir segala material substrat untuk menyusun bagian komposit, sungguh-sungguh meningkatkan kemampuan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit tentang Rubber yakni kompleksitasnya. Rubber adalah bahan paling rumit yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebetulnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Contohnya, logam lazimnya dicampur dari mungkin 2 sampai 4 faktor; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya patut dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menetapkan adalah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang bisa diprediksi secara masuk logika di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan respons kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membangkang analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang dikasih, penting untuk memahami bermacam-macam alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai teladan, beberapa polimer Rubber unggul pada ketahanan kepada cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan kinerja yang amat baik dari temperatur yang betul-betul rendah sampai temperatur yang benar-benar tinggi, namun mempunyai energi tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa amat mempengaruhi sifat kinerja.

Berbagai usul polimer potensial ini menawarkan terhadap insinyur pelbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan performa memerlukan pemilihan yang jitu di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber yaitu latihan yang sungguh-sungguh rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada hasilnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting ialah menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang harus memulai dengan mempertimbangkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Mengerjakan cairan? Apakah perlu menyimpan dan melepaskan tenaga? Apakah itu hanya mengirimkan energi? Apakah energi mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu keindahan Rubber adalah kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap kali mewujudkan Rubber opsi terbaik untuk insinyur.

Untuk menetapkan performa yang tepat dan usia panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan ialah: kisaran temperatur dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan sebagainya.); eksposur radiasi apa bahkan (radiasi panas, cahaya matahari, UV, korona, dan sebagainya.); gaya yang dijumpai (apakah bobot diatur atau defleksi ditetapkan); dan tekanan hadir. Kian jitu hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar peluang keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali melalui berjenis-jenis gerakan, yang lazimnya sesuai untuk Rubber; namun pelenturan siklik berulang bisa mewujudkan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan memunculkan tantangan khusus (karena mesin penggagas melalui frekuensi kritisnya). Desain untuk aplikasi dinamis menunjang seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak lazim untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dikerjakan di laboratorium dan memberikan beberapa indikasi kinerja formulasi. Namun, benar-benar sering hanya menguji bahwa duplikat kondisi lapangan dapat diandalkan untuk memutuskan penerimaan akhir dari formulasi.

Memutuskan bahan Rubber untuk aplikasi bisa jauh lebih menantang daripada memutuskan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber yaitu milik produsen yang dikasih yang mengembangkannya, dan karena itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, lebih-lebih ketika bersepeda dinamis ialah fitur yang dominan. Untuk aplikasi kritis seperti itu sering tidak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dll), dan satu-satunya alternatif insinyur mungkin untuk menentukan formulasi Rubber kepemilikan yang sebenarnya yang sudah rupanya dalam aplikasi.

Mengingat berjenis-jenis opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka mempunyai peluang terbaik untuk menemani Anda via dunia Rubber yang beragam dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.