O Ring Manufacturing Tolerances – 031-8286515

O Ring Manufacturing Tolerances – 031-8286515 – Rubber ialah bahan yang benar-benar penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; tapi Rubber mungkin yaitu material yang paling sedikit dipahami yang diterapkan para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pemrakarsa, bagus dengan truk, mobil, sepeda motor, atau sepeda. Rubber adalah bahan yang ideal untuk ini sebab kemampuannya untuk menuntaskan sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber ialah “materi apa malahan yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Meski istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, dikala ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yaitu sintetis, dan semuanya memperlihatkan fleksibilitas ciri Rubber alam.

Seperti figur ban menandakan, Rubber bisa melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat diklasifikasikan secara luas ke dalam golongan fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Mengerjakan cairan (seumpama Selang taman
  3. Menyimpan tenaga (semisal kabel bungee)
  4. Mengirimkan energi (umpamanya sabuk pencetus)
  5. Meresap energi (seumpama Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Padahal para insinyur mungkin mengaplikasikan banyak alternatif lain untuk menempuh tujuan ini, Rubber kerap tampil dengan keanggunan yang lebih besar dan biaya sempurna yang lebih rendah ketimbang opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang sangat rumit, dan dapat terikat pada hampir seluruh material substrat untuk membentuk komponen komposit, benar-benar meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit perihal Rubber merupakan kompleksitasnya. Rubber yaitu bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yaitu sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Umpamanya, logam biasanya dicampur dari mungkin 2 sampai 4 unsur; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan sempurna, yang semuanya seharusnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan mempertimbangkan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda patut memanaskan Rubber selama waktu yang cukup untuk menyebabkan reaksi kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, reaksi yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari begitu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang diberi, penting untuk memahami berjenis-jenis opsi yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai figur, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan daya kerja yang amat baik dari temperatur yang benar-benar rendah hingga temperatur yang benar-benar tinggi, tetapi memiliki energi bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sangat mempengaruhi sifat performa.

Beragam masukan polimer potensial ini menawarkan kepada insinyur berbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara seluruh kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan kinerja memerlukan pemilihan yang akurat di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber adalah latihan yang sungguh-sungguh rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting merupakan memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang semestinya memulai dengan memutuskan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Melaksanakan cairan? Apakah perlu menaruh dan melepaskan kekuatan? Apakah itu cuma mengirimkan kekuatan? Apakah energi mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber ialah kemampuannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini sering kali menciptakan Rubber pilihan terbaik untuk insinyur.

Untuk menentukan daya kerja yang tepat dan usia panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat sangat terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yakni: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa malahan (radiasi panas, cahaya matahari, UV, korona, dan lainnya.); gaya yang ditemui (apakah muatan ditetapkan atau defleksi ditentukan); dan tekanan hadir. Semakin jitu hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang benar-benar menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali via bermacam-macam gerakan, yang biasanya cocok untuk Rubber; tapi pelenturan siklik berulang dapat mewujudkan retakan kelelahan yang pada alhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan syarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan menimbulkan tantangan khusus (sebab mesin pemrakarsa melewati frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak biasa untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dilaksanakan di laboratorium dan memberikan beberapa indikasi kinerja formulasi. Melainkan, amat kerap hanya menguji bahwa duplikat keadaan lapangan bisa diandalkan untuk memastikan penerimaan akhir dari formulasi.

Memastikan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang menetapkan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber merupakan milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, khususnya ketika bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tak ada spesifikasi universal yang layak untuk daftar pada gambar (umpamanya ASTM line callout, dan lain-lain), dan satu-satunya alternatif insinyur mungkin untuk menetapkan formulasi Rubber kepemilikan yang sesungguhnya yang sudah ternyata dalam aplikasi.

Mengingat beraneka alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yaitu dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka memiliki kans terbaik untuk mendampingi Anda melewati dunia Rubber yang berbagai dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk favorit.

Need IndustrialĀ Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.