Mechanical Seal Specifications Pdf – 031-8286515

Mechanical Seal Specifications Pdf – 031-8286515 – Rubber adalah bahan yang amat penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tapi Rubber mungkin yaitu material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pemrakarsa, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber adalah bahan yang tepat untuk ini sebab kecakapannya untuk menyelesaikan sebagian fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber ialah “materi apa malahan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini diterapkan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar ialah sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti contoh ban menandakan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat diklasifikasikan secara luas ke dalam golongan fungsional berikut:

  1. Sealing fluid (contohnya O-Ring)
  2. Melakukan cairan (seumpama Selang taman
  3. Menaruh daya (misalnya kabel bungee)
  4. Mengirimkan tenaga (misalnya sabuk pelopor)
  5. Mengabsorpsi kekuatan (misalnya Bumper)
    Menyediakan dukungan struktural (semisal Bantalan jembatan)

Padahal para insinyur mungkin menggunakan banyak opsi lain untuk menempuh tujuan ini, Rubber tak jarang tampil dengan keanggunan yang lebih besar dan tarif sempurna yang lebih rendah ketimbang alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat dibentuk menjadi konfigurasi yang amat kompleks, dan dapat terikat pada hampir semua material substrat untuk menyusun komponen komposit, benar-benar meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit seputar Rubber ialah kompleksitasnya. Rubber ialah bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Misalnya, logam lazimnya dicampur dari mungkin 2 hingga 4 unsur; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan sempurna, yang semuanya semestinya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menentukan adalah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, reaksi yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk akal di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari seperti itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menentang analisis. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang diberi, penting untuk memahami berjenis-jenis pilihan yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai daya dan kelemahannya. Sebagai model, sebagian polimer Rubber unggul pada ketahanan terhadap cairan agresif, tapi mungkin memiliki batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan daya kerja yang amat baik dari temperatur yang sungguh-sungguh rendah hingga suhu yang sungguh-sungguh tinggi, tetapi memiliki kekuatan tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat sangat mempengaruhi sifat daya kerja.

Bermacam-macam masukan polimer potensial ini menawarkan kepada insinyur berbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan kinerja memerlukan pemilihan yang akurat di antara alternatif. Banyaknya variabel yang berperan membuat desain formulasi Rubber yaitu latihan yang benar-benar kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting ialah memastikan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang harus mengawali dengan menentukan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu cuma mengirimkan daya? Apakah kekuatan menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi memerlukan banyak perbuatan mekanis, dan salah satu estetika Rubber merupakan kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini kerap menghasilkan Rubber opsi terbaik untuk insinyur.

Untuk mempertimbangkan kinerja yang tepat dan usia panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan yaitu: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan sebagainya.); eksposur radiasi apa pun (radiasi panas, sinar matahari, UV, korona, dan lain-lain.); gaya yang ditemui (apakah bobot ditentukan atau defleksi diatur); dan tekanan hadir. Kian cermat hal ini bisa dikarakterisasi dan dikuantifikasi, kian besar kesempatan keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali lewat beraneka gerakan, yang biasanya cocok untuk Rubber; tetapi pelenturan siklik berulang dapat menghasilkan retakan kelelahan yang pada akhirnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk mempertimbangkan syarat dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (sebab mesin pionir lewat frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi maksimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dikerjakan di lab dan memberikan beberapa indikasi performa formulasi. Tapi, betul-betul tak jarang hanya menguji bahwa duplikat situasi lapangan bisa dipercaya untuk memastikan penerimaan akhir dari formulasi.

Memastikan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang menentukan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yakni milik produsen yang diberikan yang mengembangkannya, dan sebab itu tak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, terpenting dikala bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu sering tak ada spesifikasi universal yang layak untuk daftar pada gambar (contohnya ASTM line callout, dsb), dan satu-satunya pilihan insinyur mungkin untuk memutuskan formulasi Rubber kepemilikan yang hakekatnya yang sudah ternyata dalam aplikasi.

Mengingat bermacam-macam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka memiliki kesempatan terbaik untuk memandu Anda lewat dunia Rubber yang bermacam dan kompleks. Pada walhasil, ini akan menghemat waktu dan uang Anda, sementara juga menjadikan produk unggulan.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.