Mechanical Seal-Drawing And Parts – 031-8286515 – Rubber yaitu bahan yang betul-betul penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; tetapi Rubber mungkin yaitu material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pionir, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber merupakan bahan yang ideal untuk ini sebab kemampuannya untuk menyelesaikan beberapa fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan tahan lama untuk membendung udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.
Definisi teknik dari bahan Rubber yakni “materi apa bahkan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Sedangkan istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya memperlihatkan fleksibilitas ciri Rubber alam.
Seperti figur ban menandakan, Rubber dapat melayani sejumlah tujuan rekayasa. Bentang aplikasi bisa dikategorikan secara luas ke dalam kategori fungsional berikut:
- Sealing fluid (contohnya O-Ring)
- Melakukan cairan (semisal Selang taman
- Menyimpan tenaga (misalnya kabel bungee)
- Mengirimkan tenaga (seumpama sabuk penggagas)
- Mengabsorpsi daya (misalnya Bumper)
Menyediakan dukungan struktural (umpamanya Bantalan jembatan)
Meskipun para insinyur mungkin menerapkan banyak alternatif lain untuk mencapai tujuan ini, Rubber kerap tampil dengan keanggunan yang lebih besar dan tarif sempurna yang lebih rendah daripada opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang betul-betul kompleks, dan bisa terikat pada hampir seluruh material substrat untuk membentuk komponen komposit, sangat meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.
Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit tentang Rubber merupakan kompleksitasnya. Rubber merupakan bahan paling rumit yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.
Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebetulnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Umpamanya, logam lazimnya dicampur dari mungkin 2 hingga 4 unsur; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan sempurna, yang semuanya sepatutnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.
Kompleksitas Rubber yang terakhir dan menentukan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda mesti memanaskan Rubber selama waktu yang cukup untuk menyebabkan reaksi kimia yang tak dapat dibalikkan yang melibatkan banyak bahan, respon yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk logika di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membangkang analisa. Ada terlalu banyak variabel yang berperan!
Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami berbagai pilihan yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing memiliki energi dan kelemahannya. Sebagai contoh, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, tetapi mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan performa yang amat bagus dari suhu yang sangat rendah sampai suhu yang amat tinggi, tapi memiliki daya tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa amat memberi pengaruh sifat daya kerja.
Bermacam-macam masukan polimer potensial ini menawarkan kepada insinyur beragam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan daya kerja membutuhkan pemilihan yang cermat di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber yakni latihan yang betul-betul kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada akibatnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.
Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting ialah mempertimbangkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang semestinya mengawali dengan menetapkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Menjalankan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu cuma mengirimkan energi? Apakah daya menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?
Sebagian besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu keindahan Rubber yakni kesanggupannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap kali menghasilkan Rubber pilihan terbaik untuk insinyur.
Untuk menentukan performa yang tepat dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber dapat betul-betul terbatas tergantung pada kombinasi kondisi. Hal yang perlu dipertimbangkan adalah: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa malahan (radiasi panas, cahaya matahari, UV, korona, dan sebagainya.); gaya yang ditemui (apakah muatan ditetapkan atau defleksi ditentukan); dan tekanan hadir. Semakin akurat hal ini dapat dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.
Sebuah aplikasi yang amat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via beragam gerakan, yang biasanya sesuai untuk Rubber; namun pelenturan siklik berulang bisa menghasilkan retakan kelelahan yang pada kesudahannya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan persyaratan dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (sebab mesin pencetus melewati frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.
Dalam mengoptimalkan formulasi, itu tak umum untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dijalankan di lab dan memberikan sebagian indikasi performa formulasi. Namun, betul-betul tak jarang hanya menguji bahwa duplikat situasi lapangan bisa diandalkan untuk mempertimbangkan penerimaan akhir dari formulasi.
Menetapkan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yaitu milik produsen yang diberi yang mengembangkannya, dan karena itu tidak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari spesialis kimia formulasi menjadi lebih penting, terutamanya dikala bersepeda dinamis adalah fitur yang dominan. Untuk aplikasi kritis seperti itu acap kali tidak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dan lain-lain), dan satu-satunya alternatif insinyur mungkin untuk memastikan formulasi Rubber kepemilikan yang hakekatnya yang sudah ternyata dalam aplikasi.
Mengingat berjenis-jenis alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber merupakan dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam cara kerja. Mereka mempunyai kans terbaik untuk memandu Anda melalui dunia Rubber yang berjenis-jenis dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk unggulan.
Need Industrial Seal? Please call 031-8286515