Mechanical Face Seal Handbook – 081332174171

Mechanical Face Seal Handbook – 081332174171 – Rubber merupakan bahan yang sungguh-sungguh penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; namun Rubber mungkin merupakan material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pencetus, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yaitu bahan yang tepat untuk ini karena kesanggupannya untuk menyelesaikan beberapa fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan bendung lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan pergesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber ialah “materi apa pun yang bisa meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang sebagian besar yaitu sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti figur ban menggambarkan, Rubber dapat melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat diklasifikasikan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (umpamanya O-Ring)
  2. Menjalankan cairan (misalnya Selang taman
  3. Menyimpan tenaga (umpamanya kabel bungee)
  4. Mengirimkan tenaga (misalnya sabuk pencetus)
  5. Meresap kekuatan (umpamanya Bumper)
    Menyediakan dukungan struktural (umpamanya Bantalan jembatan)

Sedangkan para insinyur mungkin menerapkan banyak alternatif lain untuk mencapai tujuan ini, Rubber acap kali tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah ketimbang alternatif, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat disusun menjadi konfigurasi yang amat rumit, dan dapat terikat pada hampir seluruh material substrat untuk membentuk bagian komposit, sungguh-sungguh meningkatkan kecakapan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan mengapa kebanyakan insinyur cuma tahu sedikit seputar Rubber ialah kompleksitasnya. Rubber yaitu bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang hakekatnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Seumpama, logam umumnya dicampur dari mungkin 2 hingga 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas biasanya terdiri dari 10 – 20 bahan total, yang semuanya mesti dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan mempertimbangkan yakni sifat termosettingnya. Untuk memproduksi komponen Rubber Anda patut memanaskan Rubber selama waktu yang cukup untuk menyebabkan reaksi kimia yang tidak bisa dibalikkan yang melibatkan banyak bahan, reaksi yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk logika di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang diberi, penting untuk memahami berjenis-jenis opsi yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai daya dan kelemahannya. Sebagai figur, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tapi mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan daya kerja yang betul-betul baik dari temperatur yang benar-benar rendah hingga temperatur yang benar-benar tinggi, namun mempunyai tenaga tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa benar-benar memberi pengaruh sifat daya kerja.

Bermacam-macam usulan polimer potensial ini menawarkan kepada insinyur beragam kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan daya kerja membutuhkan pemilihan yang jitu di antara alternatif. Banyaknya variabel yang berperan membikin desain formulasi Rubber merupakan latihan yang sungguh-sungguh kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada akhirnya, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting yaitu mempertimbangkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang mesti mengawali dengan menetapkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah komponen akan menyegel cairan? Melaksanakan cairan? Apakah perlu menyimpan dan melepaskan energi? Apakah itu hanya mengirimkan daya? Apakah daya meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu estetika Rubber yaitu kesanggupannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap menciptakan Rubber opsi terbaik untuk insinyur.

Untuk memutuskan daya kerja yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat sangat terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan yakni: kisaran temperatur dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dll.); eksposur radiasi apa bahkan (radiasi panas, cahaya sang surya, UV, korona, dan sebagainya.); gaya yang dijumpai (apakah muatan diatur atau defleksi ditentukan); dan tekanan hadir. Semakin akurat hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via berjenis-jenis gerakan, yang lazimnya sesuai untuk Rubber; tapi pelenturan siklik berulang bisa mewujudkan retakan kelelahan yang pada akhirnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pelopor melalui frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tidak biasa untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan pengikisan, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dijalankan di laboratorium dan memberikan beberapa indikasi kinerja formulasi. Melainkan, sungguh-sungguh acap kali cuma menguji bahwa duplikat kondisi lapangan dapat diandalkan untuk memutuskan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang menentukan logam atau plastik. Dibandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber yaitu milik produsen yang diberikan yang mengembangkannya, dan karena itu tak tersedia secara luas. Saat aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, terpenting ketika bersepeda dinamis yakni fitur yang dominan. Untuk aplikasi kritis seperti itu tak jarang tak ada spesifikasi universal yang sesuai untuk daftar pada gambar (contohnya ASTM line callout, dan lainnya), dan satu-satunya alternatif insinyur mungkin untuk memastikan formulasi Rubber kepemilikan yang sebetulnya yang telah terbukti dalam aplikasi.

Mengingat beraneka pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam proses. Mereka mempunyai kesempatan terbaik untuk memandu Anda via dunia Rubber yang berjenis-jenis dan rumit. Pada akibatnya, ini akan menghemat waktu dan uang Anda, sementara juga mewujudkan produk unggulan.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.