Mechanical Carbon Seal – 031-8286515

Mechanical Carbon Seal – 031-8286515 – Rubber merupakan bahan yang benar-benar penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tetapi Rubber mungkin ialah material yang paling sedikit dipahami yang diterapkan para insinyur. Aplikasi Rubber yang paling nampak terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk penggerak, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yaitu bahan yang tepat untuk ini karena kecakapannya untuk mengatasi beberapa fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang benar-benar fleksibel dan tahan lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa malahan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke format aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini diaplikasikan untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yaitu sintetis, dan semuanya menampakkan fleksibilitas ciri Rubber alam.

Seperti contoh ban menggambarkan, Rubber bisa melayani sejumlah tujuan rekayasa. Bentang aplikasi bisa dikategorikan secara luas ke dalam klasifikasi fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Menjalankan cairan (umpamanya Selang taman
  3. Menyimpan tenaga (umpamanya kabel bungee)
  4. Mengirimkan energi (umpamanya sabuk penggerak)
  5. Mengabsorpsi tenaga (seumpama Bumper)
    Menyediakan dukungan struktural (semisal Bantalan jembatan)

Sedangkan para insinyur mungkin mengaplikasikan banyak pilihan lain untuk mencapai tujuan ini, Rubber kerap tampil dengan keanggunan yang lebih besar dan biaya total yang lebih rendah daripada pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber dapat dibentuk menjadi konfigurasi yang sungguh-sungguh rumit, dan dapat terikat pada hampir segala material substrat untuk menyusun bagian komposit, benar-benar meningkatkan kecakapan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan mengapa kebanyakan insinyur hanya tahu sedikit seputar Rubber yaitu kompleksitasnya. Rubber yakni bahan paling kompleks yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang hakekatnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Contohnya, logam biasanya dicampur dari mungkin 2 sampai 4 faktor; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya seharusnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan menetapkan adalah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda seharusnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berguna. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang bisa diprediksi secara masuk akal di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari semacam itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menentang analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami beraneka opsi yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing memiliki energi dan kelemahannya. Sebagai contoh, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tetapi mungkin memiliki batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan kinerja yang betul-betul baik dari suhu yang benar-benar rendah sampai suhu yang betul-betul tinggi, melainkan memiliki daya bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa sangat memberi pengaruh sifat kinerja.

Bermacam-macam masukan polimer potensial ini menawarkan terhadap insinyur berbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan performa memerlukan pemilihan yang jitu di antara alternatif. Banyaknya variabel yang berperan membuat desain formulasi Rubber merupakan latihan yang sungguh-sungguh rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada kesudahannya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting merupakan memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang seharusnya memulai dengan memastikan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menaruh dan melepaskan kekuatan? Apakah itu cuma mengirimkan energi? Apakah energi meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu keindahan Rubber yakni kesanggupannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini acap kali mewujudkan Rubber opsi terbaik untuk insinyur.

Untuk mempertimbangkan kinerja yang tepat dan usia panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber bisa benar-benar terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan adalah: kisaran temperatur dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lain-lain.); eksposur radiasi apa malah (radiasi panas, cahaya sang surya, UV, korona, dll.); gaya yang dijumpai (apakah bobot ditetapkan atau defleksi ditentukan); dan tekanan hadir. Kian akurat hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar peluang keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali lewat beraneka gerakan, yang lazimnya pantas untuk Rubber; namun pelenturan siklik berulang dapat menjadikan retakan kelelahan yang pada walhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menetapkan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin pencetus lewat frekuensi kritisnya). Desain untuk aplikasi dinamis mendukung seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan erosi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dikerjakan di lab dan memberikan sebagian indikasi performa formulasi. Melainkan, amat sering kali hanya menguji bahwa duplikat keadaan lapangan bisa diandalkan untuk memutuskan penerimaan akhir dari formulasi.

Memastikan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang memastikan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber yaitu milik produsen yang diberikan yang mengembangkannya, dan sebab itu tak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, terlebih ketika bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tidak ada spesifikasi universal yang layak untuk daftar pada gambar (seumpama ASTM line callout, dsb), dan satu-satunya alternatif insinyur mungkin untuk memutuskan formulasi Rubber kepemilikan yang sesungguhnya yang sudah ternyata dalam aplikasi.

Mengingat beragam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber adalah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pelaksanaan. Mereka memiliki kans terbaik untuk memandu Anda lewat dunia Rubber yang berbagai dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar anda diproses.