John Crane Mechanical Seal Type 8b2 – 031-8286515

John Crane Mechanical Seal Type 8b2 – 031-8286515 – Rubber yakni bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; tetapi Rubber mungkin yaitu material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling terlihat terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pelopor, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber ialah bahan yang pas untuk ini karena kecakapannya untuk memecahkan sebagian fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang amat fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yakni “materi apa malah yang bisa meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Walaupun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar yaitu sintetis, dan semuanya menonjolkan fleksibilitas ciri Rubber alam.

Seperti contoh ban menandakan, Rubber bisa melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat diklasifikasikan secara luas ke dalam kategori fungsional berikut:

  1. Sealing fluid (misalnya O-Ring)
  2. Melakukan cairan (umpamanya Selang taman
  3. Menyimpan energi (umpamanya kabel bungee)
  4. Mengirimkan tenaga (seumpama sabuk penggerak)
  5. Menyerap energi (semisal Bumper)
    Menyediakan dukungan struktural (semisal Bantalan jembatan)

Meskipun para insinyur mungkin mengaplikasikan banyak pilihan lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa dibentuk menjadi konfigurasi yang sungguh-sungguh rumit, dan dapat terikat pada hampir semua material substrat untuk menyusun bagian komposit, betul-betul meningkatkan kecakapan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit seputar Rubber adalah kompleksitasnya. Rubber yakni bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari seluruh zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Seumpama, logam lazimnya dicampur dari mungkin 2 sampai 4 faktor; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya harus dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan mempertimbangkan merupakan sifat termosettingnya. Untuk memproduksi komponen Rubber Anda mesti memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, respons yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berguna. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang bisa diprediksi secara masuk nalar di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari begitu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa menyangkal analisa. Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami bermacam pilihan yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai figur, sebagian polimer Rubber unggul pada ketahanan terhadap cairan agresif, tetapi mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang sungguh-sungguh baik dari suhu yang sungguh-sungguh rendah sampai suhu yang sungguh-sungguh tinggi, namun memiliki kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang bisa betul-betul mempengaruhi sifat performa.

Berjenis-jenis masukan polimer potensial ini menawarkan terhadap insinyur pelbagai kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengembangkan kinerja membutuhkan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membikin desain formulasi Rubber merupakan latihan yang benar-benar rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting ialah memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang mesti mengawali dengan mempertimbangkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah komponen akan menyegel cairan? Melakukan cairan? Apakah perlu menaruh dan melepaskan daya? Apakah itu hanya mengirimkan energi? Apakah tenaga mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak tindakan mekanis, dan salah satu keindahan Rubber ialah kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini kerap menciptakan Rubber pilihan terbaik untuk insinyur.

Untuk memastikan performa yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber bisa sungguh-sungguh terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yaitu: kisaran suhu dalam aplikasi; semua bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dsb.); eksposur radiasi apa bahkan (radiasi panas, cahaya matahari, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah muatan ditentukan atau defleksi diatur); dan tekanan hadir. Semakin akurat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar kans keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang benar-benar menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali lewat beragam gerakan, yang umumnya pantas untuk Rubber; tapi pelenturan siklik berulang bisa menciptakan retakan kelelahan yang pada walhasil bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk mempertimbangkan prasyarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pencetus melewati frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang optimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan dibuat dan diuji sebelum tiba di solusi optimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilakukan di lab dan memberikan sebagian indikasi performa formulasi. Namun, amat sering kali hanya menguji bahwa duplikat keadaan lapangan dapat dipercaya untuk mempertimbangkan penerimaan akhir dari formulasi.

Menetapkan bahan Rubber untuk aplikasi dapat jauh lebih menantang daripada mempertimbangkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber ialah milik produsen yang dikasih yang mengembangkannya, dan sebab itu tidak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kemampuan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, terpenting dikala bersepeda dinamis merupakan fitur yang dominan. Untuk aplikasi kritis seperti itu sering kali tak ada spesifikasi universal yang pantas untuk daftar pada gambar (contohnya ASTM line callout, dll), dan satu-satunya pilihan insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang sesungguhnya yang telah rupanya dalam aplikasi.

Mengingat pelbagai opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yakni dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam progres. Mereka mempunyai peluang terbaik untuk mengantar Anda melalui dunia Rubber yang berjenis-jenis dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar anda diproses.