How Are Rubber O Rings Measured – 081332174171

How Are Rubber O Rings Measured – 081332174171 – Rubber yakni bahan yang betul-betul penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; tapi Rubber mungkin yakni material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling menonjol terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pelopor, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yakni bahan yang ideal untuk ini karena kemampuannya untuk menuntaskan sebagian fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan bendung lama untuk membendung udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber merupakan “materi apa pun yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke wujud aslinya tanpa deformasi permanen\”. Sedangkan istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, dikala ini istilah ini diaplikasikan untuk mengacu ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar adalah sintetis, dan semuanya menampilkan fleksibilitas ciri Rubber alam.

Seperti contoh ban membuktikan, Rubber bisa melayani sejumlah tujuan rekayasa. Jangka aplikasi bisa dikategorikan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (misalnya O-Ring)
  2. Mengerjakan cairan (umpamanya Selang taman
  3. Menyimpan energi (umpamanya kabel bungee)
  4. Mengirimkan tenaga (contohnya sabuk pionir)
  5. Meresap daya (contohnya Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Padahal para insinyur mungkin memakai banyak opsi lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang opsi, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber bisa disusun menjadi konfigurasi yang amat rumit, dan dapat terikat pada hampir segala material substrat untuk membentuk komponen komposit, betul-betul meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur cuma tahu sedikit perihal Rubber adalah kompleksitasnya. Rubber merupakan bahan paling rumit yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama merupakan sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Seumpama, logam lazimnya dicampur dari mungkin 2 sampai 4 faktor; plastik lazimnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya seharusnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan mempertimbangkan yakni sifat termosettingnya. Untuk memproduksi bagian Rubber Anda harus memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tak bisa dibalikkan yang melibatkan banyak bahan, reaksi yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk nalar di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari begitu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap aplikasi yang dikasih, penting untuk memahami pelbagai alternatif yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing mempunyai kekuatan dan kelemahannya. Sebagai contoh, sebagian polimer Rubber unggul pada ketahanan kepada cairan agresif, melainkan mungkin memiliki batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan performa yang sangat bagus dari temperatur yang sangat rendah sampai suhu yang amat tinggi, tetapi mempunyai kekuatan tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat benar-benar mempengaruhi sifat kinerja.

Bermacam-macam usul polimer potensial ini menawarkan terhadap insinyur bermacam-macam kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan kinerja memerlukan pemilihan yang akurat di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber adalah latihan yang amat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting adalah menetapkan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang semestinya memulai dengan mempertimbangkan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menaruh dan melepaskan tenaga? Apakah itu cuma mengirimkan tenaga? Apakah kekuatan menyerap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi memerlukan banyak tindakan mekanis, dan salah satu estetika Rubber adalah kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini sering kali mewujudkan Rubber pilihan terbaik untuk insinyur.

Untuk mempertimbangkan performa yang pas dan umur panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat sangat terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yakni: kisaran temperatur dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lainnya.); eksposur radiasi apa malahan (radiasi panas, sinar sang surya, UV, korona, dan lain-lain.); gaya yang dijumpai (apakah beban ditetapkan atau defleksi ditetapkan); dan tekanan hadir. Kian jitu hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang betul-betul menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via bermacam gerakan, yang umumnya sesuai untuk Rubber; tapi pelenturan siklik berulang bisa menjadikan retakan kelelahan yang pada akhirnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk menentukan syarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (sebab mesin pemrakarsa melalui frekuensi kritisnya). Desain untuk aplikasi dinamis mensupport seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam mengoptimalkan formulasi, itu tidak biasa untuk sejumlah campuran yang berbeda yang akan diciptakan dan diuji sebelum tiba di solusi optimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, tenaga tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilaksanakan di laboratorium dan memberikan beberapa indikasi performa formulasi. Melainkan, sangat kerap kali hanya menguji bahwa duplikat keadaan lapangan bisa dipercaya untuk memutuskan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang menetapkan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber merupakan milik produsen yang diberikan yang mengembangkannya, dan karena itu tidak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari ahli kimia formulasi menjadi lebih penting, khususnya dikala bersepeda dinamis adalah fitur yang dominan. Untuk aplikasi kritis seperti itu tak jarang tak ada spesifikasi universal yang layak untuk daftar pada gambar (misalnya ASTM line callout, dan lain-lain), dan satu-satunya opsi insinyur mungkin untuk memastikan formulasi Rubber kepemilikan yang sesungguhnya yang sudah rupanya dalam aplikasi.

Mengingat beragam opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber adalah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pengerjaan. Mereka mempunyai peluang terbaik untuk memandu Anda via dunia Rubber yang bermacam dan kompleks. Pada kesudahannya, ini akan menghemat waktu dan uang Anda, sementara juga menghasilkan produk unggulan.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.