Carbon Ring Finger – 081332174171 – Rubber merupakan bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengitari kita di mana-mana; tapi Rubber mungkin adalah material yang paling sedikit dipahami yang digunakan para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pencetus, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber merupakan bahan yang ideal untuk ini sebab kecakapannya untuk menuntaskan sebagian fungsi penting secara beriringan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang betul-betul fleksibel dan bendung lama untuk menahan udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan friksi permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.
Definisi teknik dari bahan Rubber adalah “materi apa bahkan yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Padahal istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, dikala ini istilah ini digunakan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar merupakan sintetis, dan semuanya menonjolkan fleksibilitas ciri Rubber alam.
Seperti contoh ban menggambarkan, Rubber dapat melayani sejumlah tujuan rekayasa. Jangka aplikasi dapat dikelompokkan secara luas ke dalam klasifikasi fungsional berikut:
- Sealing fluid (semisal O-Ring)
- Melaksanakan cairan (semisal Selang taman
- Menaruh energi (umpamanya kabel bungee)
- Mengirimkan energi (seumpama sabuk pemrakarsa)
- Mengabsorpsi energi (umpamanya Bumper)
Menyediakan dukungan struktural (umpamanya Bantalan jembatan)
Walaupun para insinyur mungkin menggunakan banyak alternatif lain untuk menempuh tujuan ini, Rubber sering kali tampil dengan keanggunan yang lebih besar dan biaya sempurna yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Kecuali itu, Rubber dapat dibentuk menjadi konfigurasi yang amat rumit, dan dapat terikat pada hampir segala material substrat untuk menyusun komponen komposit, benar-benar meningkatkan kesanggupan insinyur untuk menyesuaikan fungsi bagian.
Salah satu alasan kenapa kebanyakan insinyur cuma tahu sedikit tentang Rubber yakni kompleksitasnya. Rubber merupakan bahan paling rumit yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari segala zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.
Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sebenarnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Contohnya, logam lazimnya dicampur dari mungkin 2 sampai 4 unsur; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan total, yang semuanya mesti dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.
Kompleksitas Rubber yang terakhir dan memastikan ialah sifat termosettingnya. Untuk memproduksi bagian Rubber Anda sepatutnya memanaskan Rubber selama waktu yang cukup untuk menyebabkan respons kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, reaksi yang merubah sifat Rubber untuk membuatnya secara permanen fleksibel dan bermanfaat. Dalam hal logam dan plastik, cuma perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membuat perilaku yang dapat diprediksi secara masuk nalar di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Sebab Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat menyangkal analisis. Ada terlalu banyak variabel yang berperan!
Dalam memilih Rubber untuk tiap aplikasi yang diberikan, penting untuk memahami berbagai alternatif yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing memiliki kekuatan dan kelemahannya. Sebagai teladan, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tetapi mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan kinerja yang sungguh-sungguh bagus dari suhu yang amat rendah sampai suhu yang betul-betul tinggi, tapi memiliki kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat sungguh-sungguh mempengaruhi sifat performa.
Bermacam masukan polimer potensial ini menawarkan terhadap insinyur berjenis-jenis kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan kinerja membutuhkan pemilihan yang akurat di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber adalah latihan yang benar-benar kompleks dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada walhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.
Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting merupakan memutuskan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang patut memulai dengan mempertimbangkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah komponen akan menyegel cairan? Menjalankan cairan? Apakah perlu menaruh dan melepaskan energi? Apakah itu cuma mengirimkan kekuatan? Apakah daya mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?
Beberapa besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu keindahan Rubber ialah kecakapannya untuk menangani banyak keperluan dalam satu paket yang ringkas. Ini kerap kali menjadikan Rubber pilihan terbaik untuk insinyur.
Untuk memutuskan daya kerja yang ideal dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa betul-betul terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan merupakan: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dll.); eksposur radiasi apa malahan (radiasi panas, sinar matahari, UV, korona, dsb.); gaya yang dijumpai (apakah beban diatur atau defleksi diatur); dan tekanan hadir. Semakin akurat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar peluang keberhasilan dalam mencapai tujuan desain.
Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis memerlukan Rubber untuk melenturkan berulang kali melewati berjenis-jenis gerakan, yang biasanya layak untuk Rubber; melainkan pelenturan siklik berulang bisa menciptakan retakan kelelahan yang pada hasilnya bisa menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk mempertimbangkan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (karena mesin penggagas via frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.
Dalam mengoptimalkan formulasi, itu tidak umum untuk sejumlah campuran yang berbeda yang akan diwujudkan dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, energi tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilakukan di lab dan memberikan sebagian indikasi daya kerja formulasi. Tetapi, betul-betul sering hanya menguji bahwa duplikat kondisi lapangan bisa diandalkan untuk memastikan penerimaan akhir dari formulasi.
Memastikan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang mempertimbangkan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber adalah milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kesanggupan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, terlebih ketika bersepeda dinamis adalah fitur yang dominan. Untuk aplikasi kritis seperti itu kerap tak ada spesifikasi universal yang pantas untuk daftar pada gambar (semisal ASTM line callout, dan lainnya), dan satu-satunya opsi insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang hakekatnya yang sudah rupanya dalam aplikasi.
Mengingat pelbagai alternatif yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber ialah dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam proses. Mereka memiliki kesempatan terbaik untuk mengantar Anda lewat dunia Rubber yang berbagai dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga menjadikan produk favorit.
Need Industrial Seal? Please call 031-8286515