Ball Lock Keg O-Ring Sizes – 031-8286515

Ball Lock Keg O-Ring Sizes – 031-8286515 – Rubber adalah bahan yang sungguh-sungguh penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; melainkan Rubber mungkin yaitu material yang paling sedikit dipahami yang diaplikasikan para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bergantung sepenuhnya pada ban Rubber untuk pemrakarsa, baik dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yaitu bahan yang tepat untuk ini sebab kesanggupannya untuk menuntaskan sebagian fungsi penting secara berbarengan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sungguh-sungguh fleksibel dan tahan lama untuk menahan udara ini sehingga kita dapat menyadari manfaat dari bantal; dan menawarkan pergesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber yaitu “materi apa bahkan yang dapat meregang sampai setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Sedangkan istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini digunakan untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar adalah sintetis, dan semuanya menonjolkan fleksibilitas ciri Rubber alam.

Seperti teladan ban menandakan, Rubber bisa melayani sejumlah tujuan rekayasa. Bentang aplikasi dapat dikategorikan secara luas ke dalam kelompok fungsional berikut:

  1. Sealing fluid (semisal O-Ring)
  2. Menjalankan cairan (seumpama Selang taman
  3. Menyimpan energi (misalnya kabel bungee)
  4. Mengirimkan tenaga (contohnya sabuk penggagas)
  5. Meresap energi (umpamanya Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meski para insinyur mungkin menerapkan banyak alternatif lain untuk menempuh tujuan ini, Rubber sering tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah daripada pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa dibentuk menjadi konfigurasi yang benar-benar kompleks, dan bisa terikat pada hampir segala material substrat untuk menyusun bagian komposit, benar-benar meningkatkan kemampuan insinyur untuk menyesuaikan fungsi bagian.

Salah satu alasan kenapa kebanyakan insinyur cuma tahu sedikit tentang Rubber adalah kompleksitasnya. Rubber yaitu bahan paling kompleks yang dapat dimanfaatkan oleh seorang insinyur, dan kerumitannya menimbulkan fleksibilitas. Tingkat kompleksitas pertama ialah sifat molekuler dari Rubber itu sendiri: polimer Rubber mempunyai berat molekul tertinggi dan panjang rantai terpanjang dari semua zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar ketimbang material lainnya.

Tingkat kompleksitas lain muncul dengan formulasi Rubber yang sebetulnya sendiri, yang jauh lebih kompleks campuran bahan dari bahan teknik lainnya. Umpamanya, logam umumnya dicampur dari mungkin 2 hingga 4 unsur; plastik umumnya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas lazimnya terdiri dari 10 – 20 bahan total, yang semuanya sepatutnya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memastikan adalah sifat termosettingnya. Untuk memproduksi komponen Rubber Anda mesti memanaskan Rubber selama waktu yang cukup untuk menyebabkan tanggapan kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berkhasiat. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk nalar di antara beberapa konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari seperti itu banyak bahan yang berbeda dan melibatkan respon kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang dapat membangkang analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk setiap aplikasi yang dikasih, penting untuk memahami bermacam pilihan yang tersedia. Sama seperti plastik, Rubber mempunyai banyak keluarga polimer yang masing-masing mempunyai energi dan kelemahannya. Sebagai contoh, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, namun mungkin mempunyai batas yang parah pada fleksibilitas temperatur rendah; yang lain menawarkan performa yang betul-betul bagus dari suhu yang amat rendah hingga suhu yang betul-betul tinggi, namun mempunyai kekuatan bendung dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat sungguh-sungguh mempengaruhi sifat kinerja.

Beragam usulan polimer potensial ini menawarkan terhadap insinyur berbagai kemungkinan. Tantangannya timbul dalam memahami kesesuaian antara semua kemungkinan yang tersedia dan aplikasi spesifik; untuk mengoptimalkan kinerja membutuhkan pemilihan yang akurat di antara opsi. Banyaknya variabel yang berperan membuat desain formulasi Rubber ialah latihan yang sangat rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah ketimbang dalam kasus logam dan plastik. Pada akhirnya, desain formulasi Rubber yang maksimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk mengoptimalkan aplikasi, tugas yang paling penting yaitu menentukan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang wajib mengawali dengan memastikan gol mekanis primer dan sekunder untuk bagian Rubber. Apakah bagian akan menyegel cairan? Melaksanakan cairan? Apakah perlu menyimpan dan melepaskan energi? Apakah itu cuma mengirimkan daya? Apakah kekuatan meresap suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Beberapa besar aplikasi memerlukan banyak perbuatan mekanis, dan salah satu keindahan Rubber ialah kesanggupannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini tak jarang mewujudkan Rubber alternatif terbaik untuk insinyur.

Untuk memutuskan performa yang ideal dan umur panjang, penting untuk memahami lingkungan di mana komponen Rubber akan beroperasi. Pemilihan formulasi Rubber bisa sungguh-sungguh terbatas tergantung pada kombinasi keadaan. Hal yang perlu dipertimbangkan merupakan: kisaran temperatur dalam aplikasi; seluruh bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan sebagainya.); eksposur radiasi apa pun (radiasi panas, cahaya sang surya, UV, korona, dsb.); gaya yang dijumpai (apakah beban ditentukan atau defleksi ditetapkan); dan tekanan hadir. Kian akurat hal ini bisa dikarakterisasi dan dikuantifikasi, semakin besar kans keberhasilan dalam menempuh tujuan desain.

Sebuah aplikasi yang sangat menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali lewat beraneka gerakan, yang umumnya pantas untuk Rubber; melainkan pelenturan siklik berulang bisa menjadikan retakan kelelahan yang pada alhasil dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memastikan prasyarat dinamis: spektrum frekuensi yang diinginkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah momen start-up atau shut-down akan memunculkan tantangan khusus (karena mesin pelopor melalui frekuensi kritisnya). Desain untuk aplikasi dinamis mendorong seni Rubber ke batas terbesarnya, dan membutuhkan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengembangkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak awam untuk sejumlah campuran yang berbeda yang akan dibuat dan diuji sebelum tiba di solusi maksimal. Penekanan suhu, pencelupan cairan, pengujian elongasi, kekuatan tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan dapat dikerjakan di laboratorium dan memberikan beberapa indikasi daya kerja formulasi. Melainkan, betul-betul sering kali cuma menguji bahwa duplikat keadaan lapangan dapat dipercaya untuk mempertimbangkan penerimaan akhir dari formulasi.

Memutuskan bahan Rubber untuk aplikasi dapat jauh lebih menantang ketimbang mempertimbangkan logam atau plastik. Dibandingi dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditas, formulasi Rubber ialah milik produsen yang diberi yang mengembangkannya, dan karena itu tak tersedia secara luas. Dikala aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, terutamanya dikala bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu sering tak ada spesifikasi universal yang layak untuk daftar pada gambar (semisal ASTM line callout, dan sebagainya), dan satu-satunya opsi insinyur mungkin untuk menetapkan formulasi Rubber kepemilikan yang sebenarnya yang sudah ternyata dalam aplikasi.

Mengingat berjenis-jenis opsi yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yaitu dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam proses. Mereka mempunyai peluang terbaik untuk mengantar Anda via dunia Rubber yang berjenis-jenis dan kompleks. Pada hasilnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.

Need Industrial Seal? Please call 031-8286515

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.