2.5 Inch O Ring – 031-8286515

2.5 Inch O Ring – 031-8286515 – Rubber merupakan bahan yang sangat penting untuk peradaban industri modern, dengan aplikasi yang mengelilingi kita di mana-mana; namun Rubber mungkin merupakan material yang paling sedikit dipahami yang dipakai para insinyur. Aplikasi Rubber yang paling kelihatan terjadi pada transportasi modern, yang bertumpu sepenuhnya pada ban Rubber untuk pionir, bagus dengan truk, kendaraan beroda empat, sepeda motor, atau sepeda. Rubber yaitu bahan yang ideal untuk ini karena kesanggupannya untuk memecahkan sebagian fungsi penting secara bersamaan: menyegel bantalan udara bertekanan yang melembutkan perjalanan kami; menyediakan membran yang sangat fleksibel dan tahan lama untuk membendung udara ini sehingga kita bisa menyadari manfaat dari bantal; dan menawarkan gesekan permukaan yang tinggi untuk memberikan traksi kendaraan untuk propulsi, kemudi, dan pengereman.

Definisi teknik dari bahan Rubber merupakan “materi apa malah yang dapat meregang hingga setidaknya 100% dari panjang aslinya, dan kembali ke bentuk aslinya tanpa deformasi permanen\”. Meskipun istilah “Rubber” berasal dari Rubber alam sejati yang berasal dari pohon, ketika ini istilah ini dipakai untuk merujuk ke sejumlah bahan rekayasa yang berbeda, yang beberapa besar ialah sintetis, dan semuanya menunjukkan fleksibilitas ciri Rubber alam.

Seperti model ban membuktikan, Rubber dapat melayani sejumlah tujuan rekayasa. Rentang aplikasi dapat digolongankan secara luas ke dalam kategori fungsional berikut:

  1. Sealing fluid (seumpama O-Ring)
  2. Mengerjakan cairan (semisal Selang taman
  3. Menyimpan tenaga (umpamanya kabel bungee)
  4. Mengirimkan kekuatan (semisal sabuk pencetus)
  5. Mengabsorpsi kekuatan (contohnya Bumper)
    Menyediakan dukungan struktural (misalnya Bantalan jembatan)

Meskipun para insinyur mungkin menerapkan banyak pilihan lain untuk mencapai tujuan ini, Rubber kerap kali tampil dengan keanggunan yang lebih besar dan tarif total yang lebih rendah ketimbang pilihan, dan tentu saja dengan tingkat fleksibilitas tertinggi. Selain itu, Rubber bisa dibentuk menjadi konfigurasi yang sangat rumit, dan bisa terikat pada hampir seluruh material substrat untuk menyusun bagian komposit, sangat meningkatkan kemampuan insinyur untuk menyesuaikan fungsi komponen.

Salah satu alasan kenapa kebanyakan insinyur hanya tahu sedikit perihal Rubber yaitu kompleksitasnya. Rubber merupakan bahan paling rumit yang bisa dimanfaatkan oleh seorang insinyur, dan kerumitannya memunculkan fleksibilitas. Tingkat kompleksitas pertama yakni sifat molekuler dari Rubber itu sendiri: polimer Rubber memiliki berat molekul tertinggi dan panjang rantai terpanjang dari semua zat. Ukuran dan panjangnya yang tipis ini memungkinkan molekul-molekul Rubber untuk membungkuk dan mengalir dengan kebebasan ekstrim, dan gerakan mikroskopik inilah yang diterjemahkan ke dalam defleksi makroskopik yang 10 kali lebih besar daripada material lainnya.

Tingkat kompleksitas lain timbul dengan formulasi Rubber yang sesungguhnya sendiri, yang jauh lebih rumit campuran bahan dari bahan teknik lainnya. Umpamanya, logam lazimnya dicampur dari mungkin 2 sampai 4 elemen; plastik biasanya memadukan 3 atau 4 bahan. Sebagai perbandingan, formulasi Rubber khas umumnya terdiri dari 10 – 20 bahan sempurna, yang semuanya semestinya dipilih secara hati-hati dan dibagikan untuk memodifikasi sifat akhir.

Kompleksitas Rubber yang terakhir dan memutuskan yakni sifat termosettingnya. Untuk memproduksi komponen Rubber Anda wajib memanaskan Rubber selama waktu yang cukup untuk menyebabkan respon kimia yang tidak dapat dibalikkan yang melibatkan banyak bahan, tanggapan yang mengubah sifat Rubber untuk membuatnya secara permanen fleksibel dan berguna. Dalam hal logam dan plastik, hanya perubahan fasa yang terjadi, \”pencairan dan pembekuan\” material, dalam arti; ini membikin perilaku yang dapat diprediksi secara masuk nalar di antara sebagian konstituen yang dicampur bersama untuk bahan-bahan ini. Karena Rubber terdiri dari demikian itu banyak bahan yang berbeda dan melibatkan tanggapan kimia di antara banyak bahan ini, ada tingkat kompleksitas dan ketidakpastian yang bisa membantah analitik . Ada terlalu banyak variabel yang berperan!

Dalam memilih Rubber untuk tiap-tiap aplikasi yang diberikan, penting untuk memahami bermacam-macam alternatif yang tersedia. Sama seperti plastik, Rubber memiliki banyak keluarga polimer yang masing-masing memiliki tenaga dan kelemahannya. Sebagai figur, beberapa polimer Rubber unggul pada ketahanan terhadap cairan agresif, tapi mungkin mempunyai batas yang parah pada fleksibilitas suhu rendah; yang lain menawarkan performa yang sungguh-sungguh bagus dari temperatur yang benar-benar rendah hingga suhu yang betul-betul tinggi, tetapi mempunyai kekuatan tahan dan kekasaran yang terbatas. Teknik trade-off berlimpah. Dan dalam keluarga polimer yang lebih luas ada subdivisi lebih lanjut dari varietas polimer tertentu yang dapat benar-benar memberi pengaruh sifat performa.

Berjenis-jenis masukan polimer potensial ini menawarkan terhadap insinyur beraneka kemungkinan. Tantangannya muncul dalam memahami kesesuaian antara segala kemungkinan yang tersedia dan aplikasi spesifik; untuk memaksimalkan daya kerja memerlukan pemilihan yang jitu di antara pilihan. Banyaknya variabel yang berperan membuat desain formulasi Rubber yakni latihan yang sungguh-sungguh rumit dengan tingkat prediktabilitas analitik yang jauh lebih rendah daripada dalam kasus logam dan plastik. Pada alhasil, desain formulasi Rubber yang optimal berutang banyak pada \”seni\” pragmatis seorang praktisi yang berpengalaman.

Dalam mencari untuk memaksimalkan aplikasi, tugas yang paling penting adalah memastikan tujuan aplikasi dan lingkungan operasi sejelas mungkin. Seseorang patut mengawali dengan menetapkan gol mekanis primer dan sekunder untuk komponen Rubber. Apakah bagian akan menyegel cairan? Melakukan cairan? Apakah perlu menyimpan dan melepaskan daya? Apakah itu hanya mengirimkan daya? Apakah tenaga mengabsorpsi suatu tujuan? Akankah Rubber perlu menyediakan dukungan struktural dalam suatu perakitan?

Sebagian besar aplikasi membutuhkan banyak perbuatan mekanis, dan salah satu keindahan Rubber yaitu kecakapannya untuk menangani banyak kebutuhan dalam satu paket yang ringkas. Ini kerap menjadikan Rubber alternatif terbaik untuk insinyur.

Untuk memastikan daya kerja yang pas dan usia panjang, penting untuk memahami lingkungan di mana bagian Rubber akan beroperasi. Pemilihan formulasi Rubber dapat benar-benar terbatas tergantung pada kombinasi situasi. Hal yang perlu dipertimbangkan yakni: kisaran suhu dalam aplikasi; segala bahan eksposur (minyak, bahan bakar, pendingin, ozon, pelarut, dan lainnya.); eksposur radiasi apa malahan (radiasi panas, sinar matahari, UV, korona, dan lainnya.); gaya yang dijumpai (apakah muatan ditentukan atau defleksi ditentukan); dan tekanan hadir. Kian cermat hal ini dapat dikarakterisasi dan dikuantifikasi, kian besar kans keberhasilan dalam mencapai tujuan desain.

Sebuah aplikasi yang sungguh-sungguh menantang melibatkan siklus dinamis Rubber. Bersepeda dinamis membutuhkan Rubber untuk melenturkan berulang kali via berjenis-jenis gerakan, yang biasanya layak untuk Rubber; tetapi pelenturan siklik berulang dapat menghasilkan retakan kelelahan yang pada hasilnya dapat menyebabkan kegagalan Rubber. Untuk aplikasi bersepeda dinamis, penting untuk memutuskan persyaratan dinamis: spektrum frekuensi yang diharapkan; amplitudo defleksi yang diantisipasi atau pemuatan yang akan ditransmisikan; dan apakah peristiwa start-up atau shut-down akan menimbulkan tantangan khusus (sebab mesin penggagas via frekuensi kritisnya). Desain untuk aplikasi dinamis mendukung seni Rubber ke batas terbesarnya, dan memerlukan perhatian terbesar dalam mengkarakterisasi aplikasi dan mengoptimalkan formulasi Rubber yang maksimal untuk memenuhi tantangan.

Dalam memaksimalkan formulasi, itu tak umum untuk sejumlah campuran yang berbeda yang akan dibuat dan diuji sebelum tiba di solusi maksimal. Penekanan temperatur, pencelupan cairan, pengujian elongasi, daya tarik, pengujian ketahanan sobek, pengujian ketahanan abrasi, bersepeda fleksibel, penuaan ozon, dan pelapukan bisa dilakukan di laboratorium dan memberikan beberapa indikasi kinerja formulasi. Tapi, sungguh-sungguh acap kali hanya menguji bahwa duplikat kondisi lapangan dapat diandalkan untuk menentukan penerimaan akhir dari formulasi.

Mempertimbangkan bahan Rubber untuk aplikasi bisa jauh lebih menantang ketimbang menentukan logam atau plastik. Diperbandingkan dengan kebanyakan logam dan plastik, formulasi Rubber benar-benar \”tidak standar\”. Tidak seperti 1018 baja atau Nylon 66, yang secara universal tersedia dan didokumentasikan komoditi, formulasi Rubber ialah milik produsen yang diberi yang mengembangkannya, dan sebab itu tidak tersedia secara luas. Ketika aplikasi menjadi lebih menantang, kecakapan dan pengalaman dari pakar kimia formulasi menjadi lebih penting, terutamanya dikala bersepeda dinamis yaitu fitur yang dominan. Untuk aplikasi kritis seperti itu kerap kali tidak ada spesifikasi universal yang layak untuk daftar pada gambar (misalnya ASTM line callout, dll), dan satu-satunya alternatif insinyur mungkin untuk mempertimbangkan formulasi Rubber kepemilikan yang sebetulnya yang sudah ternyata dalam aplikasi.

Mengingat bermacam pilihan yang tersedia dan kompleksitas bahan-bahan Rubber, pendekatan terbaik untuk merancang dengan Rubber yaitu dengan melibatkan seorang insinyur Rubber berpengalaman sedini mungkin dalam pengerjaan. Mereka memiliki peluang terbaik untuk memandu Anda melalui dunia Rubber yang pelbagai dan rumit. Pada akhirnya, ini akan menghemat waktu dan uang Anda, sementara juga menciptakan produk unggulan.

Need Industrial Seal? Please call 081332174171

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.